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PREFACE

During the past two decades much attention has been directed to-
ward the development, use, and analysis of acoustical information sys-
tems for a wide range of applications. The requirements of these sys-
tems have become increasingly complex and the research associated
with them has produced a wealth of experimental data, instrumentation,
arnd theoretical analyses. YXurther, advances in circuit system and in-
formation theory have provided additional tools for use directly or in-
divectly in the solution of problems associated with these requirements.

Despite the availability of these theoretical tools and instrumenta-
tion, many critical problems remain, The need is therefore evident for
improving methods of describing and analyzing complex information
processes, both to assist in the selection of measuring instrumentation
and in the design of acoustical systems,

Typical problem areas are those associated with sonar. Herethere
is frequently a need for simultaneously fulfilling a number of functions
such asthe determination of the existence of a number of signal sources,
their localization, isolation in space, and their identification. Amnalytical
methods must describe quantitatively the effectiveness of rerforming
these functions within the limitations imposed by such constraints as
power, time, bandwidth, and spatial extent. Additional constraints al-
most invariably arise from lack of complete knowledge regarding the
space-time characteristics of the boundaries and other characteristics
of the medium in which the system must operate. These uncertainties
must be undersiood and preferably should be an explicit pvart of the
analysis, Beyond this, logistic factors such as complexity and relia-
bility require consideration, Similar problems arise in radar, optics,
radio astronomy, and many other areas, but associations arc compli-
cated by complex and specialized terminologies.

This document has been prepared by the authors under Office of
Naval Research sponsorship. It presents an introductory study of the
interrelations among techniques which are presently available and cut-
lines some of the problem areas for which existing methods are not
applicable. Hopefully it will serve as a guide and stimulant for the
additional work required to solve the many difficult problems which
remain,

Washington, D. C. Aubrey W. Pryce
October 1962 Director, Acoustics Programs
Office of Naval Research
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INTRODUCTION

This survey actempts to provide guidelines within which analytical and instrumental
aspects of multidimensional information-processing may be examined. In all practical cases,
a large number of processing procedures are permissible, and a large number are, in fact,
necessary. It would be desirable to have rules for determining quantitatively the most eco-
nomical, or the most effective of the techniques. However, their formulation is not easily or
simply done, and discussions of only a few introductory facets comprise this entire volume.

The distinguishing feature of the work is the attempt made to bring together analytical and
instrumental tools which appear to be of value in improving the understanding of problems
associated with multidimensional, acoustical information processes, particularly those requir-
ing both time and space variables for their descriptions. Complete and unified treatment has
not been possible and consequently the survey should be considered as an introduction to prob-
lems rather than as a detailed exposition of solutions.

Contemporary literature of communications, detection, and informaticn theory, and the
rapid evolution of radar and communication systems reflect the greater effort in electromag-
netic areas relative to acoustics. Until recently, point-to-point transfer of information had
been the major concern in electromagnetics. The bulk of analytic work is still characterized
by having spatial details elided or analyzed separately in noninformational terms. There are
many pragmatic reasons for this, since complete space-time representations may become
prohibitively eomplex, and in fact, for some applications such analysis may not be justified.
Despite the complexity it is necessary to attempt consolidating basic concepts which are
associated with multidimensional processing.

It is important first to recognize some of the factors which have influenced the evolutionary
trends of electromagnetic and acoustic information systems such as radar and sonar. In sonar,
the relatively low velocity of propagation of energy in conjunction with the use of audio frequen-
cies established requirements for spatially-complex systems such as highly directional, multi-
beam transmission and reception. These systems were required in order to overcome low
data rates and to reduce the effects of the many sources of interference within the medium,
including the effects of multiple-path propagation. The use of low frequencies facilitated the
early development of components permitting electronic beam-forming of large arrcys. In
eleciromagnetics, the propagation velocity provided inherently high data rates and electronic
beam forming was not considered an important requirement and in fact was not realizable until
recently. The advent of high-speed radar targets imposed incrrasingly severe functional
requirements necessitating extremely large transmitting and receiving arrays, high power, and
complex waveforms. Limitations on the performance of many electromagnetic systems - radar
and communications - are now no longer solely attributable to stationary noise processes
within the receiver, but arise from external interactions with a complex environment. Since
these problems have characterized sonar from its earliest days to the present, performance is
not to be evaluated simply, in threshold detection terms alone, but involves fulfillment of a
number of functions, such as resolving and tracking multiple targets having a wide range of
levels. Other features may include distinguishing spatial extent and shape, and temporal
changes of these characteristics. In terms of equipment economy, operaticnal necessity, or
under environmental conditions where propagation characteristics may be time-varying, many
of the operations are to be performed simultaneously or in rapid sequence. Not all of the
functions may be performed independently, and determining the nature of constraints comprises
an important element in the understanding of physical processes and system analysis. Under
the joint influence of technological advances and severe performance requirements many prob-
lems within previously unrelated areas such as optics, communications, radio astronomy,
radar, and sonar have converged. An interchange of ideas and techniques may now be possible,
and, hopefully this document will facilitate such an interchange.



At one time, information theory was regarded as a potential unifier which would provide
solutions of problems within several areas in terms common to each of them. Unfortunately,
this has not completely materialized since unifying philosophies have an unfortunate tendency
to become highly specialized subjects in themselves, thereby compounding rather than easing
the problems of interdisciplinary translations. Although this tendency exists, it is not the sole
difficulty associated with unification. Despite morphological similarities which appear within
many areas, fundamental differences also exist, and a detailed understanding of the physical
processes within each area aiways remains as an important requirement. Analytical models
applicable within one area may inadequately represent physical processes in other areas. The
inadequacy may arise from assumptions made to simplify analysis, or the models may be so
complex that physical properties are obscured. As a result, the evolution of instrumentation,
measurement procedures, and of systems may be misdirected, or may be unduly influenced by
gadgeteering when analytical models are completely ignored. This survey is intended to
reflect a belief that improved understanding of information processing can result from a
blending of mathematics which describes real physical processes and contains an attitude
toward mathematics and instru:mentation which makes them each contributing, rather than
controlling, components of the blend.

A brief review of the organization which has been followed will be presented. Because of
the strong interrelacionship which exists among the topics of the survey it is difficult to develop
their significance in a satisfying, logical sequency. The major topics include analytical
descriptions of the structural details of functions and physical elements, discussions of infor-
mation processes, and an introduction to system analysis. Representations of functions may
not be detached from element analysis, which in turn, is strongly associated with information
and decision theory. Emphasis on the analysis of components tends to vbscure sysiem con-
siderations wherein interrelationships - including the order in which components are 2ss.m-
bled - may have an importance equal to or greater than the characteristics of componen 3
considered in isolation.

Initially, analytical representations of functions are discussed illustrating some of the
many methods which are available for representing structural detail of functions. Of impor-
tance are the dual requirements for matching descriptions to the characteristics of the func-
tions, including bounds which are imposed, while taking into account the use which is to be
made of the representation. The intent may be to improve understanding or visualization of a
problem, to facilitate computations, or to make the ultimate realization of instrumentation
more economical. No single class of representations can be expected to fulfill each of these
requirements optimally. Consequently, a large number of methods have been developed.
Rigorous and exact procedures cannot be formulated for the selection of a method for a par-
ticular problem, but there are certain invariant features which, wheun recognized, serve as
useful guidelines.

The methods of Fourier 2aalysis serve as an important introduction. Such methods are
regarded from the beginning not merely as procedures associated with harmonic analysis, but
as bagic techniques for the transformation of variables. Representations, sampling, and
tra=eioryations are seen to be related operations with an important commeon characteristic
being a conversion of structural detail with the intent to simplify functions or to reduce the
coraplexity of operations on the functions. Not only analysis is to be simplified - there may be
a preferred domain or structure for physical realization and measurement. Measures of
completeness, of conservation, or invariance must be applied, since simplification is not a
sufficient criterion for quantitative analysis. Since two or more domains may be involved, the
correlation of errors of analytical approximations, and of measurement must be known or
established among them. Fourier representations inherently involve mean-square-error as a
criterion, and when the structural components represent amplitudes of physical variables, then
measures of completenzss are ii vnergy terms. Properties of Fourier transforms and the use
of Fourier related descriptions for deterministic and random processes are outlined. These
include autocorrelation functions, power spectra, probability density functions, and ~haracter-
istic functions. The use of statistical descriptions may arise in several ways. The only infor-
mation available or obtainable may be statistical, or the complexity associated with the use of
deterministic descriptions may be such that statistical analysis involving a reduction of
dimensionality is a practical necessity. Additional descriptions involving joint relationships
are required as the number of independent variables increases ~ these may include




crosscorrelation functions, cross-power spectra, joint probability density functions, and joint
characteristic functions. The concepts of linear and statistical independence, coherence, and
of orthogonality are discussed. Properties of gaussian distributions are seen to have special
significance in multidimensional problems.

Although time is implicitly and explicitly involved as an independent variable in the
preliminary discussions, the same procedures may be extended to include spatial problems.
Spatial sampling concepts apply directly in one or two dimensions. Representation of a
radiated field associated with discrete radiators may be made with Fourier series with the
element excitation acting as the coefficients in the series. For continuous radiators the field
can be expressed as the Fourier transform of the amplitude distribution. The resulting
equations are valid at large distances from the radiating aperture and when the distribution
does not vary too rapidly in intensity in terms of the wavelength of radiation.

Procedures related to the representation of functions are used for descriptions of physical
elements. Earlier it was indicated that the two topics are closely related. A specific example
of this relationship is the description oi time-bounded functions in which the characteristics of
the function generator are used as an integral part of the representation. Element analysis
requires determining the relationship between the input and output. Specific uses of the super-
position integral and system function - being time and frequency structural representations of
elements - are given. Such descriptions are related through the Fourier fransform. Element
analysis and synthesis include not only measures of completeness, but also of physical real-
izability and stability. Choice of the representation may be influenced by additional consider-
ations required when multiple elements are involved.

Related problems are discussed which arise in the analysis of spatial elements. Optical
imaging elements may be treated as two-dimensional space-frequency filters and techniques
of circuit theory may be applied to their analysis. Descriptions corresponding to the impulse
response and transfer function are the point source response and the transfer function. The
transfer function describes the contrast reduction for a series of sinusoidal patterns of
increasing spatial frequency. Here, too, one domain may be preferred for analysis or meas-
urement. In optics, it is often more convenient to measure iiie reduction in contrast of a
periodic test object than to determine the light distribution in an image.

Although similar concepts may be employed in antennae design, greater complexity arises
in conjunction with the avaiiability of the spatial dimensions and time as an additional variable.
Normally, reflector antennae and two-dimensional arrays may he rega.ded as space filters
and their analysis may be effected by linear, time-invariant network theory. However, if use
is to be made of the additional dimensions, then the analysis is more complex, The equivalent
network is time-varying with the output being a function of the modulation of the antenna
parameters and the input signal. However, multiplicity of spatial patterns will be available,
each pattern comprising, in a sense, an independent information channel. The greater dimen-
sionality available in array design may also involve operations in the near and far fields, both
in transmission and reception. Additional degrees-of-freedom may be obtained from the use
of polarized radiation. However, their utility may be determined only after careful analysis
has established the nature of the dependencies within the various domains.

In order to illustrate some of the types of constraints which may arise in representations

of structure a few basic examples are discussed in detail. It is important to recognize that,
in general, the number and type of structural components are not intrinsic properties of a

’ particular problem but are actually functions dependent on the mode of representing or defining
the problem. Earlier it was stated that imposing bounds on functions had influence on the type
of representation which could be used. For example, when a common point of origin in time
does not exist, phase information may not be significant, and descriptions such as power
spectra, autccorrelation functions, or low-order statistical moments may be used. If the
process is bounded, however, important restrictions may arise. Concepts as instantaneous
power spectrum and spectral correlation are reviewed. Spectral correlation, for example,
permits distinguishing between a random function and one which is switched on 2nd off period-
ically. Bounds imposed jointly in conjugate domains involve additional constraints, and the
descriptions, “or example, of time and bandlimited functions is found to be dependent on the
manner in which the effective "occupancy' in the time and frequency domains has been defined.
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For somgc problems it is desirable to have the product of the time and freguency occupancy a
minimum. Spectrum analyses of transient signals, and simulianeous measurements of fre-
quency and time of arrival of pulsed signals, are required in many problems. A common
characteristic of such descriptions and operations is that an indeterminancy exists which
imposes a limit on the number of independent structural components. One method of describ-
ing the indeterminancy is by a joint autocorrelation function. This function indicates that
although the distributions within the joint domains may be altered by nonsimultaneous, that is,
sequential operations, the structure defined by this function is invariant to combined displace-
ments in time and frequency. Similar relationships occur in spatial problems involving bounds
on aperture distributions and the angular spectra associated with the radiated energy. Bounds
imposed jointly set limits on the resolving power and rejection of an antenna or lens. Other
indeterminate relationships exist, for example, the formation of : . image in an optical system,
or a reflector antenna is a function of time. In order to establish the steady-state image or
directivity pattern, the length of a pulse must be at least as long as the aperture. Since the
pulse length represents a measure of range resolution there exisis a limiting value of the
combined angular and range resolution. Increasing aperture size to improve angular resolu-
tions may decrease range resolution. It is of interest to note that human performance exhibits
similar characteristics when subjected to multiple tasks. The span of absolute judgement is a
term applied to the description of the structural detail which may be performed. Different
limiting values or spans resvlt depending on whether the challenge is in a single mode or in
two or more modes simultaneously. In gquantum mechanics, a number of “uncertainty relation-
ships" have been defined. These give the limits associated with simultaneous operations on
canonically conjugate variables. Recognition of the relationship has provided valuable con-
ceptual and quantitative guides in modern physics. Studies of constraints associated with
multiple, simultaneous operations associated with Fourier-related variables are playing an
increasingly important roll in information processing.

Preceding discussions are concerned with descriptions of structural aspects only. The
one concept which was stressed involved determining the number of degrees-of-freedom which
may be required - or which may be available and, up to this point, explicit. Considerations of
the physical environment have not been necessary since structural detail may be specified
a priori. It is this factor which permits formulating and solving problems in communications,
optics, radar, sonar and radio astronomy by analogous methods. It is also indicated that some
understanding of the physical processes is required, particularly in spatial problems since a
direct correspondence does not exist among the several areas. The full importance of detailed
understanding of the physical processes arises when the totality of information is analyzed -
including not only structure but also the range of observable values which can be associated
with the structure., There are a number of representations of information, and their complete
review would transcend the scope of this work and hence only a few basic facets are discussed.

Structural representations were discussed without reference to the disturbing influence of
noise or experimental errors. Measures of completeness were seen to be related to the
presence of bounds, including those jointly imposed on conjugate variables. The number of
intervals which can be observed or measured within a structural representation, however, will
be limited by thermal noise occurring at some stage of the observation process. The total
information will consist of the number of discernible points within the complete structure -
which may include space and time variables. This measure constitutes the total number of
steps required for identifying or selectinga representation from an ensemble of possible
representations. It also constitutes a measure of the information obtained from a measure-
ment. Measurements are characterized by a2 number of limitations which always put a {inite
bound on information. Infinitely fine structural detail cannot be physically observed because
bounds limit resolution, and the detail within the structure is limited to finite values because
of the unavoidable presence of errors or noise. Structural "noise' may also occur, for
example, in conjunction with time-varying propagation parameters. Important aspacts of
informational processing require determining information content, information rate, or infor-
mation density, relating these measures to the fulfillment of specific functicns, and establish-
ing measures of cost or efficiency. The total, complete evaluation is deperdent on the nature
of the bounds imposed on the problem, and on the characteristics of the physical environment.
For multidimensional problems, complex interrelations may exist and decision theory rules are
required to establish quantitative assessments.




In order to illustrate the use of these concepts a number of informational processes are
discussed. These inclvde filtering operations with the desired and undesired information
assuming a variety of structures. Problems associated with multiple, matched filtering and
anzlogies in spatial processes are discussed. Combined spzce-time operations are also out-
lined. These problems have been selected from a number of areas in order to illustrate
similarities and differences within acoustics and electromagnetics. An introduction to system
problems within the several areas is also miade with emphasis on the relationships of infor-
mation sources, the propagating medium, and receiverz. Finally, a summary review is
presented for sucoustics and electromagnetics using the major topics of the survey as the
organizational elements.

A large amount of detail 1s presented; a vastly greatei amount has been omitted. Although
it is difficult to present generalized evaluations of significance, there are some features which
deserve reemphasis. The ultimate use of information processing involves making decisions
based on measurements oi physical processes. The processes of interest in this survey are
characterized by large dimensionality - specifically invoiving spatlal and temporal variables.
Information processing requires sequences of many transformations from the physical to the
decision environment. The transformations are made to effect simplification and may involve
reduction of dimensionality, or matching. Quantitative measures are required to establish
their effectiveness, and in order to simplify analysis it may be necessary to apply several
criteria in the analysis of complex system problems. These criteria may include energy
transfer, information conservation, or a number of statistical decision rules. An important
key to multidimensional analysis involves determining the degree and nature of dependencies
which constrain the effectiveness of the processing. The existence of bounds such as finite
time, spatial extent, bandwidth, energy, and the presence of noise all combine to limit the total
information. Representations of structural detail, since these details are specifiable a priori,
may be made by analogous methods for many acoustic and electromagnetic processes per-
mitting an interchange of analytical and instrumental technigues in areas such as optics,
circuit theory, radar, radio astronomy, and sonar. However, for complete analysis it is
necessary to consider the totality of information which involves detailed a posteriori knowledge
of the environment, and to provide a quantitative assessment of effectiveness and costs asso-
ciated with the processing.

Unfortunately it is necessary to consider specific system problems individually. However,
some elements of the philosophy contained may be useful in minimizing time and effort spent
searching for improvements of components when performance may be inherentiy constrained
by the bounds which have been imposed on the problem. Under such conditions the philosophy
outlined in the survey would suggest a diversion or search for other domains where additional
degrees of freedom may be obtained. The synthesis of large antennal structures by the motlon
of simple elements as has been performed by radio astronomers and in surveillance radar
comprlse excellent examples of the concept and of the constraints on such operations. Numer-
ous other examples are discussed in the text. It is evident that some oi the fundamental dif-
ferences between acoustical and electromagnetic processes which exist may be used to
advantage In information processing through the combined use and interactlon of acoustical

and electromagnetic energy.

The individual elements described by this survey are not original. The significance of the
work consists in its organlzation, that is, in the attempt made to trace systematically baslc
mathematical and physical concepts which characterize space-time information processing.
Many of the actual descriptions are in themselves quite familiar, In many instances, individual
descriptions and illustrations have been taken directly from reference works and exact and
complete acknowledgment may not iave been made in all instances. The document may con-
tribute llttle to specialists or to the fortunate individuals who have already developed their own
philosophy of information processing. Hopefully it may be of some value as a guide tc indi-
viduals who lack the considerable time which is required to develop their own philosophy by
wading through the voluminous literature currently available.

The following references have heen helpful in establishing the basic concepts which have
been descrlbed in the introduction.
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A. REPRESENTATIONS OF FUNCTIONS

1. DETERMINISTIC ANALYSIS |

INTRODUCTION

The intent of the initial section of the survey is to discuss various analytical methods for
representing some of the functions which are important in information processing. It is
neither possible nor desirable to present completely the many facets, and only a few aspects
which illustrate basic attitudes will be discussed.

Two requirements are involved when representing structur=l d.tail of functions. The
description must "match' the characteristics of the function and the use which is to be made
of the representation. The latter may involve improving understianding or visualization of a
problem, facilitating computations, or making the uitimate realization of instrumentation more
economical. No single class of representations may be expected to fulfill each of these
optimally, and a large number of methods have been developed. Although rigorous procedures
cannot be formulated for the selection of a method for a particular problem, some useful
guidelines exist.

Fourier analysis constitutes an important introduction to the methods of representing
functions, not only historically, but as a basic and useful technique. It is to be regarded as
more than harmonic analysis, incorporating the fundamental concepts of a transformation of
variables - that is, the conversion of structural detail with the intent to simplify functions or
to reduce the complexity of operations on the functions. The simplification may involve not
only analytical operations but there may be a preferred domain or structure for measurement
or physical realization. Since simplification is not an adequate criterion for quantitative
analysis, measures of completeness must be applied. Fourier representations inherently
involve mean-square-error as a criterion, where the structural components represent ampli-
tudes of physical variables, and the measure is in energy terms.

FOURIER SERIES

The Fourier series constitutes an excellent introduction to representations that are not
bounded, that is, those that do not have fixed origin or epoch and hencc are invariant under a
displacement of time, and which involve linearity. Linearity requires that added causes
produce added effects independent of the effects of previous causes. The 2nalysis must sup-
port the properties of both invariance and linearity. A linear analysis into trigonometric
terms is an example.

The simplest representation of a function by linearily-additive trigonometric terms is
that provided by the theory of Fourier series. A Fourier series may be used to represent an
arbitrary function f(t) over a time interval T if f(t) is absolutely integrable over the inter-
val, i.e.,

T
J|f(t)|dt < (A-1)
0

and, if the total rise plus the total fall of the function in the interval is finite. Thi« permits
applying a minimization (or maxima) criterion with respect to some characteristic of the
original function in order to evaluate the completeness of the representation. Alternate
specifications which permit analysis by a Fourier series require the function f(t) to contain
a finite amount of energy in the interval T (integrable square), i.e.,

9
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1
Ilf(t)l2dt <. (A-2)
o

The value of the function at & point of discontinuity is assumed to be the average of the right
and left limiting values (continuous in the mean), i.e.,

()] gue, = % [lim'\t fleg + |el) + Limir £(tg - lsI)J . (A-3)

€~0 ()

A class\ ¢ functions that meets these restrictions can be expressed in trigonometric form as

i A 27 . 2m
n €08 St + By sin 5 ntJ . (A-4)

B, = % j £(t) sin%.z nt dt . (A-5)

where D, are the complex Fourier coefficients and D\ their complex conjugates

1 T2 - 2—"'nt
T

D, = f(t)e deNL

-T/2

(A-T)

Positive and negative harmonics, or positive and negative frequencieNg, are considered equally;
two conjugate complex coefficients are furnished for the frequency tert™s and their sum repre-
sents the real coefficients given by (A-4).

Completeness of the Fourier series representation may be considered by
finite number of terms ix: (A-6) and the error function ey

. jn-g.l.zt
f(t) - ZDne
-N

Use of the error function establishes an integral-square ervor criterion and gives the inter-
polation error in terms of energy. By expanding (A-38) a set of orthogonal coefficients D is
determined which make ¢y a minimum. When this is done the Fourier coefficients given by
(A-17) are obtained and thus the Fourier series is an orthogonal representation. The integral-
square error criterion is an implicit property of the Fourier series. The error vanishes as
the number of terms in the expansion becomes infinite.

S\xamining a

T/2 2
dt .

ey =

-T/2

An important theorem in Fourier series analysis is Parseval'a theorem, This states that
when D is given by (A-T), the error function (A-8) will tend to zero in the limit as N+ » and

T/2 o
%j lecey]? ae =Z |nn|2. (A-9)

-T/2 -®
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Hence, if the f(t) represenis a physical process, such as a pressure-time function, the

aversor cicrey arsvcialed with: the function is ejual o the sum of the oo rage ereryy in the

Fourier components.

If the coefficients of a harmonic series expansgion are chosen to be Fourier ccefficients,
then the integral-square error will have its smailest possible value. From Parseval's
theorem, a finite number of Fourier terms will be a better approximation of the original
function with respect to snergy content than a similar number of terms of any other orthogonal
representation. It is this aspect which makes Fourier expansion such a useful tool, for it is
this and only this expansion which shows how the energy is distributed in frequency. Figure
A-1 illustrates how the sum of the first three terms of the Fourier Series expansion of a train

of pulses approximates the function.

A 0<t<T/2
f(t):
] T/I2<t<T

(a) 3
7
[}
A
‘ t
-37/2 -T -1/2 T/2 T 37/2 27 5T/2
5
A p1 2A 2A
f = — = S 8 = i ces
(t) 2 + = sin wt + 3 in 3wt + S sin Sawt +

2A . 2A
+ = 22 si .
5 sin wt + 37 sin 3wt

(b)

% gln Joart

Figure A-1 - IMlustration of howthe sum of the first three terms of the Fourier series
expansion of a train of pulses approximates the function

LINE SPECTRA

Two spectra can always be obtained from a Fourier analysis. A complete and practical
characterization of a function can be given by a graph with the harmonic numbev n as abscissa
and the Fourier coefficients A, and B, as ordinates, They are called the Fourier cosine-series
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spectrum and the Fourier sine-series spectrum according to whether the A or 5, coefficients
are plotted. Since n is a discontinuous variable, each spectrum will consist of a set of dis-
crete lines.

The line specirum, using form (A-6), can also be used to characterize the amplitudes and
phase angles of the harmonic expansion at the harmonic frequencies. The amplitude and phase
spectra are even and odd symmetrical functions of frequency, respectively.

CONTINUOUS SPECTRUM

The concept of a spactrum can be extended to include noncontinuous or transient functions.
In the discussion of the Fourier series; reference to a periodic function was deliberately
omitted since the series may also be used for the representation of functions within a given
interval., It is important tc note that line spectra as representations are confined to periodic
functions. If the function is nonperiodic, the phase and amplitude spectra will be continuous.

The transition from a line to a continuous spectrum is illustrated in Figi.e A-2 where the
continuous spectrum of a pulse is obtained by letting the period of an infinite train of pulses,
Figure A-2(a), become infinite. Figure A-2(b) shows that when the period is doubled with the
nulse height and width being unchanged, the zero frequency component (the average value of the
wave) is halved and the spectrum will contain more harmonics but have the same envelope. in
Figure A-2(c), the period is again doubled and the results are similar to those in Figure
A-1(b). As the period is increased indefinitely, the continuous spectrum of an isolated pulse
is finally obtained as shown in Figure A-1(d). In the limit, the value of the zero frequeacy
component and the spacing between the harmonic frequency components becomes zero This
continuous spectrum may be regarded as consisting of an infinite number of "'components."
The magnitudes of the components are infinitesimal and cannot be measured by direct graphical
methods. Calculus techniques over finite time intervals must be used.

FOURIER RELATIONSHIP BETWEEN THE
WAVEFORM AND SPECTRUM

The continuous counterpart tu the complex Fourier geries representation of a waveform
given by (A-6) is

®

f{(t) = -2-1;,- J‘ F(jw)e“,t dw (A-lO)

where F(jw) is the amplitude=pliase spectrum, « - 2.1 15 the raliat ireguency, 2 cudiravas
variable. Equation (A-10) is valid provided the integral exists, and indicates that the Fourier
coefficients are a discrete form of the Fourier spectrum,

The waveform f(t) and its amplitude-phase spectrum F(j«) forin a Fourier transform
pair. That is, when the waveform is given by (A-10), the Fourier spectrum may be
expressed as

F(jw) = f feeye '@t e . (A-11)

The Fourier spectrum is determined by the complete history of the waveform from t = -« to
t = +@, When it is expressed in terms of frequency f, the complex notation on the left-hand
side of (A-11) is usually omitted, and F(jw) becomes F(f).

A useful theorem in Fourier transform analysis is Plancherels' theorem. It states that
if F(f) is of integrable square on the entire range, -o < f < », then there is a function f(t)
which is also of integrable square on the entire range, -o < t < w, The functions are related
by the following:
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o© @
J IFc£y) 2 df = J l£cey] 2 dt . (A-12)
Since If(t)zl % is the instantaneous power, (A-iz) represents the total energy of the waveform
and |F(f)|? is the energy spectrum. Planchereis' theorem is the continuous analogue of

Parseval's theorem and measures the completeness of the Fourier transformation by estab-
lishing an energy equivalence between the waveform and its spectrum. Similarly, it reduces
the integral-square error to zero.

Despite the limitations and difficulties associated with analytical and practical aspects of
Fourier transforms, the benefits to be derived are considerable. The most powerful aspects
of Fourier transform theory may perhaps be attributed to extensibility, that is, the inherent
ability to encompass a wide range of physical processes. Fourier transform theory historically
has set the stage for other transforms. A characteristic of all transforms derivable from the
Fourier transform is that they pcssess a Plancherel type theorem and consequen ‘y, an integral-
square error for evaluation purposes.

Transforms and the procedures implied, "transformaticns,” have always been fundamental
tools. One definition of "transform' is ''to change in form, shape, nature, fun tion, as an
algebraic expression or geometrical figure, without altering the meaning or value," Together,
with this, should be added the definition of its synonym, "convert" which is, "a change of the
details which are better suited for a particular use."” These definitions contain the essence of
transform theory. That is, a transform is a tool that provides a greater flexibility for the
application of mathematical analysis to the reduction of a problem. The type of transformation
made is dependent on the type of problem and the application to which the results are tc be
applied. Thus, transformations involve physical and analytical "“instrumentation' which intend
to match the source of the problem to its destination.

Transforms pertain to numbers or variables, as well as to functions of variables. A
familiar "number transform" is the logarithm, which allows multiplication and division to be
performed by means of the simpler operations of additior: and subtraction, respectively. A
function transform should be able to convert functions and operations in one domain into
simpler (algebraic) functions of corresponding intermediate variables. Then, as in the case of
the logarithm, the algebraic equation is more readily solved in the transformed domain. The
solution in the original domain(s) could then be obtained by consulting the appropriate tables,
thereby performing an inverse operation. This, too, is another advantage in using the trans-
form method, for it allows one to systemize results obtained with it.
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2. STATISTICAL ANALYSIS

INTRODUCTION

The need for applying probabilistic or statistical methods may arise in a number of ways.
As a result of the influence of many variabies which may not be readily measured, a deter-
ministic specification of the problem may prove impractical from both a physical and analytical
point of view. 'Noise," in general, fits in this category, since it is not possible to predict on
the basis of a measurement made at one region in space, at one instant of time, what the pre-
cise value of a noise voltage or current will be at a future time or another spatial region, How-
ever, given certain bounds on the process, useful estimates of future values or of values in
other spatial regions may be possible. In other cases, the influences of the variables may be
known or may be determinable, in principle. However, the complexity of a deterministic
description could be so great as to affect its utility, and statistical descriptions may conse-
quently be favored because of their relative simplicity.

Statistical descriptions are based upon assumption of a type of regularity. For example,
in order to establish a mathematical model of statistical events, we must assume that as the
number of experiments giving rise to the events are repeated without limit, they will tend to
some "smoothed" or regular behavior. This process is termed statistical regularity and may
give rise to a discrete or continuous raniom variable(s), though in most cases it is both.

An associated step in determining a suitable description is to establish a quantitative
measure of the variable. This is done through the notion of a probability value. A positive
number is assigned to a particular event which behaves as the limit of the relative frequency
of occurrence of that event with respect to the total number of events as the latter becomes
infinite, We can then speak, given a random process, of the probability of obtaining a particu-
lar result from that process. For a random process, the randomn variable varies not only with
respect to its position in some "space" but z2lso as a function of time.

A set of functions possessing one or more characteristic properties, such as a collection
of sine waves, is called an "ensemble” of functions if the set has 2 probability distribution
given with it. In fact, to affect a statistical analysis, our state of knowledge must be the prob-
ability distribution function of the random variables. We can then make statistical predictions
of future values of a function of the ensemble. The stochastic or random variables are also
called the degrees-of-freedom of the ensemble and are the number of values needed to specify
the function at any one instant of time.
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DISCRETE AND CONTINUOUS PROBABILITY
DENSITY FUNCTION

A function of a random variable equal to the probability of obtaining the random variab.e
as it goes through a whole range of values is calied a probability distribution function.
Although the probability distribution function offers a complete statistical description of a
random process, in most problems it cannot be determined easily by direct means, and other
descriptions are required. One of these is the probability density function which is the
derivative of the probability distribution function with respect to the random variables involved.
In order to make this definition applicable to discrete random variables the concept of impulse
functions is employed. Jf all possible values of the random variables are considered as
describing a "field," then the probability density function of any point in the "field" is proportional
to the probability of finding the random variables in a differential region containing the point.

If P(x < X) is the probability distribution function of a random variable x, where X is any
value in the range of x, then the probability density function p(x) is given as:

pxy = LN (A-13)
such that
X
P(x <X) = J p(x)dx . (A-14)

-

T differential notation, (A-13) may be expressed as
P(X-dX < x < X) = p(X)dX. (A-15)

The probability that a random variable x falls in the interval a < x < b is the difference
between the values of the probability distribution function at the end points of the interval,i.e.,

P(a<x<b) = P(x <b) - P(x < a). (A-16)

If x(t) is a random function, the probability of finding x(t) at a particular value, X, for a given
time is zero. Instead, the probability of finding x(t) within the interval X and X - dX, isdefined.
From (A-15), this probability may be expressed in terms of the probability density function p(X)
and the differential interval dXx as p(X)dX. The probability of finding x(t) equal to any value
between x = a and x = b would be the sum of the probabilities of finding it within any one of the
strips that make up the interval (if the probabilities are mutually exclusive, that is, if they do
not occur together), For a continuous random function, this may be written as:

b

P(a <x <bh) = I p(x)dx .

(A-17)
Since it is certain that (x) will be found somewhere, using (A-14),

j' p(x)dx = 1. (A-18)

The probability density function of a discrete random variable may be considered to be
comprised of an impulse at each of its possible values having a strength equal to the corre-
sponding probability.

(A-19)

M
p(x) = ZP(xmn(x-xm)

m= 1
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is the probability density function for a discrete random variable which has M possible values
x, with probabilities P(x,}. The function 5(x - x,) is the impulse function centered upon x = x_.

AVERAGES

The usefulness of a probability density function is that irom it may be derived averages
which are better adapted for analysis and measurement. These include the mean value, the
mean-square value, and averages of higher positive powers of random functions.

The concept of a statistical average involves the limit of the arithmetical average of a
random variable, If x is a discrete random variable taking on any one of M possible mutually
exclusive values x,, the statistical average E[g(x)] of a single-valued function of x, g(x),
which would also be a discrete random variable is defined by the equation

M

Bla0] = ) a(xp)PCx) (A-20)

m=1
where P(x,) is the probability of occurrence of value Xy

If x is a continuous random variable with probability density function p(x), the statis-
tical average of the continuous random variable g(x) is defined as

E[g(x)] = fg(x)p(x)dx. (A-21)

Equation (A-21) may be extended to the case where x is a mixed discrete and continuous ran-
dom variable by allowing p(x) to contain impulse functions. It is important to note that the
statistical average of a function of a given random process may be a function of time.

The statistical average of the nth power of random variable x is called the nth moment, m_,
of its probability density function and is given as

«©

U [x"] = f x® p(x)dx. (A-22)

For n = 1 and n = 2, the corresponding moments are equal to the mean value and mean-square
value, respectively. In electrical terminology, m; represents the dc component of the process
and m, gives the mean power dissipated in a one-ohm resistor. It is often found convenient to
deal with the a2 or systematic components only. The averages are then called central moments,
H,, and are defined by

#n = E [(x - m") = j (x-ml)n p(x)dx . (A-23)

-0

An important central moment is u,, which is defined as the variance of the density func-
tion. From definition (A-23) the variance may be put in the form

Ky = E(x2] - (E[x])2. (A-24)
The square root of the variance is defined as the standard deviation o, i.e.,
o = (#2) 12 (A-25)

In electrical terminology, the standard deviation is the rms value of the ac component. The
variance is the mean-square vaiue and when multiplied by the conductance or resistance,

b ) >
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whichever is appropriate, it gives the mean power represented by the ac component. It is the
average ac power dissipated in one-ohm resistor.

The density function is completely determined when moments of all orders exist. Knowl-
edge of the moments is equivalent to a knowledge of the probability density function in the
sense that it is possible theoretically to exhibit all properties of the probability density function
in terms of moments.

An average that is very important in physical problems is the mean value of the function
exp (jvx), x being a random variable. This is called the characteristic function C,(jv), and
using (A-21), is expressed as

C,(jv) = E[eiv*] = eIV px)dx . (A-26)

By comparing (A-26) with the Fourier relationship between a waveform and its spectrum, the
characteristic function is the Fourier transform of the probability density function. p(x) may
be obtained by taking the inverse Fourier transform of C,(jv),

jvx

p(x) = Q%J’ Clivye ' dv. (A-27)

Since they are Fourier conjugates, both descriptions can provide equivalent information. The
use of one or the other is dependent on the problem. One of the primary attributes of this
relationship is that it may facilitate computation of the probability density function by trans-
forming an n-fold integration in the "density function domain' to »n n-fold multiplication and
one integration when the operations are performed in the "characteristic function' domain.

The averages discussed earlier were derived from the probability density function. It is
also possible to determine the moments through use of the characteristic function. The mom-
ents are calculated employing auxiliary parameters called semi-invariants or cumulants which
are derived from f power series expansion of the natural logarithm of the characteristic func-
tion. The first semi-invariant is the mean value and the second is the variance.

Averages may be obtained or defined either as operations in time or over sets of functions
at an instant of time. The time average of the function x(t) which is a member of the randcm
process [«(t)] is defined as

T.2
<Xx(t)> = limit% J’ x(t)dt (A-28)
T

- Z1/2

where T is the interval over which the average is taken. It is independent of time and gives

the dec component while eliminating both the nonsystematic and systematic components of the
function. The statistical average, unlike the time average, is usually a time function which
eliminates the nonsystematic components completely while retaining the systematic components.

The mean-square value is the average value of the square of the function and may be an
average over time or an average over the sample functions at a particular instant. The main
difierence between them is that the first is a number and the second a function of time. It
should be recognized that a mean-square value is a measure of the quantity of a function but
tells nothing of its behavior except how its mean-square value varies with time, Thus, a
variety of functions may have the same mean-square value.

STATIONARITY AND ERGODICITY

A random process may be considered as consisting of an ensemble of functinns that can be
characterized by a complete set of probability density functions. If none of the probability
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densities which describe the random process changes with time such that the statistics meas-
ured at any two distinct instants of time are the same, the process is said to be stationary "in
the strict sense.”” If the mean value ig a constant function of time and the statistical average
of the product of the random function at two insts»is of time does not depend on absolute time
but only on the time difference, then the process is said to be stationary '"in the wide sense."
A random process which is stationary in the strict sense is also stationary in the wide sense,

If each member of a stationary ensemble of random functions that maka up some random
process is typical of the ensemble as a whole, then the random process is said to be ergodic.
The statistics over a long time interval for any one randcm function are then the same as the
statistics over the ensemble of random functions at any one instant. An ergodic process is
always stationary but a stationary process can be nonergodic. Analysis can often be simplified
by assuming that a process is ergodic. However, it is not ordinarily possible to demonstrate
or to prove that the physical process is ergodic, other than by comparing the results of meas-
urements with predictions derived from the analysis.

TWO-DIMENSIONAL PROBABILITY THEORY

The probability density function of a single variable allows determining the relative
occurrence of different magnitudes but not of the time interval involved in observing such a
set of values. The knowledge of the statistics of a pair of values separated by specified
instants of time is of special importance. It is necessary to determine the probability rela-
tions concerning two coordinates x and y which may be dependent on each other — that is,
specifying the value of one affects the statistics of the other. Such distributions are called
bivariate, or joint probability distributions.

Similar to single-variable probability theory, the probability density function of two
coordinates, p(x,y) may be defined as the function which when multiplied by the infinitesimal
area dxdy gives the probability that the value of the first coordinate is in the range x to x + dx
and the value of the second coordinate is simultaneously within the range y to y + dy. The
probability that x lies between x, and x, while y lies between y; and y, is expressed as

X2 Y2

Prob {xl <x <x, y; <y < yz] = I I p(x,y)dxdy.
*1 Y,

(A-29)

The conditional probability density function expresses the state of knowledge of one vari-
able knowing the probability of occurrence of another variable , and has essentially the same
properties as the density function previously discussed. If p(x,y) is the joint probability
density function of the variables x and v, and p(x) and p(y) represent their individual den-
sities, then the conditional probability density function p(xly) is

- P(xy) (A-30)

where the independent variable is y. If x is the independent variable,

p(x,y) i (A-31)

p(ylix) = )

Conditional densities are bounded by zero and one and are at least equal to the corresponding
joint densities,

p(xly) > p(x,y) . (A-32)

Averages may be computed as previously, except that there are now two integrations to
perform,
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f(x,y) p(x,y) dxdy (A-33)

g8

E[f(x.y)] = I

where f(x,y) is the two-dimensional function under consideration. In particular, the central
moments u;, are expressed as

pie = B [x-m)! (v-my)*] (a-39)

(x-my)? (v - my)* p(x,y) dxdy (A-35)

1"
g8
;;“——-8

where m, and m, are the mean values of the random variables x and y, respectively. The
most important central moment is the quantity x,;. This is referred to as the covariance of x
and y and is expressed as:

K11

E[(x-m) (v-my)] (A-36)
= Elxy} - EIx]E[y]. (A-37)

The covariance is a measure of the linear dependence between two quantities. Zero covariance
implies linear independence but not necessarily statistical independence. Statistical independ-
ence must be determined from central moments of higher order.

Analogous descriptions may be obtained for problems of higher dimensionalily. Added
dimensions result in increased complexity in their representations, not only because more
variables are involved, but because of added bounds and possible dependencies among the
variables. Although Fourier transform theory is applicable in multidimensional problems, it
is often necessary to use other methods such as conformal mapping.

STATISTICAL INDEPENDENCE

Previously it had been indicated that covariance is a measure of the linear dependence
between two random variables. When the first joint moment E(xy) of random variables x and
y factors into the product of their means,

E(xy) = E(x)E(y) (A-38)

then x and y are linearly independent. Two random variables which are statistically independ-
ent are also linearly independent. However, linear independence does not imply that the vari-
ables are statistically independert, unless they are jointly Gaussian. A necessary and sufficient
condition for the statistical independence of two random variables is that their joint moment
factors

E(x"y*) = E(x")E(y¥) (A-39)
for all positive integral values of n and k. Statistical independence may also be expressed

through the characteristic function, i.e., the joint characteristic function of two random
variables will factor into the product of their respective characteristic functions

My, y (Vi iva) = My (iva) My(iva)- (A-40)

Equations (A-39) and (A-40) are equivalent measures.

The concept of statistical independence is of considerable importance, particularly in
multidimensional problems, since it indicates the absence of interactions among the variables
and permits simpler descriptions of processes. The key to effective analysis of multidimen-
sional problems involves determining the effect various operations have on statistical inde-
pendence. Analytically, if independence exists, then the n-d‘mensional joint characteristic
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function for n random variables is equal to the n-fold product of their individuai character-
istic functions. An important theorem in statistics is the central limit theorem. This states
that the probability distribution of the sum of an indefinitely large number of independent
Guantities will approach the Gaussian distribution, regardless of the individual distributions.
The significance of the Gaussian distributions is reflected in it being completely determined by
having a knowledge of its second moment and in not having to examine moments higher than the
first io determine independence. However, it is necessary to estaklish that transformations
performed preserve the Gaussian properties.

A measure of the similarity in phase between functions is termed coherence. When two
functions A(t) and B(t) are superimposed, the resultant average power in the time interval
T, is

T
P-v = '_i-l— J‘[‘f’(t) + B(t)]z dt (A-41)
[\]
T T T
= -% '[Az(t)dt + 71.1— JB2(t)dt + % J A(t) B(t)dt . (A-42)
0 0 °

The first two integrals on the right of the above equation represent the average power of the

functions taken separately, while the third integral represents an interaction of the two func-
tions that is dependent on their relative phase. If the third integral is zero, the functions are
said to be orthogonal. If the integral is equal to (2/T) times

T
f [Acey | [B(e) lde
0

the functions are completely coherent. All incoherent functions are orthogonal, but not all
orthogonal functions are necessarily incoherent,

It can generally be stated that {he resultant average power in the superposition of a number
of functions is equal to the sum of the average powers of the individual functions plus twice the
sum of the average values of the products of the incoherent components, each product taken
with the proper sign.
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3. CORRELATION AND SPECTRAL ANALYSIS

INTRODUCTION

The analysis employed in signal representation depends on our state of knowledge of the
function. If the state of knowledge permits us to predict with probabilityone the function’s exact
value at future instants of time, then a deterministic analysis is desirable. However, if our
state of knowledge is the probability distribution function, not equal to unity, then we may
affect a statistical analysis. Both analyses provide complete descriptions independent of the
wave-shape. The first for an arbitrary function «ver a certain time interval, zand the second
for an ensemble of functions at particular instants of time.

An analysis which depends on the state of knowledge being the value of functions at two
arbitrary instants of time is called a correlawon and spectral analysis and may be obtained
through time or statistical averaging. Correlation and spectral descriptions are derivable
from a deterministic or statistical analysis but do not provide complete descriptions, except
for Gaussian processes. Rather, they offer a qualitative and quantitative measure of trading
time-space for frequency-space or time-space for some nonconjugate space in signal repre-
sentation, Correlation and spectral analysis also helps distinguish temporal aspects in
statistical problems. In fact, for most practical problems it will yield identical results
whether determined temporally or statistically.

AUTOCORRELATION FUNC TION

One method of representing the dependence between the values of an arbitrary function at
two specified instants of time is by averaging their product, either temporally or statistically.
This type of description is called an autocorrelation function.

In the case of a statistical representation observations are made at the instants t; and t,
on a large number of gsimilar random functions, thereby obtaining an ensemble of paired values.
From (A-33), the autocorrelation function ¥(t;,tp) of a random function x(t), may be writtenas

«©

Y (tnta) = E[x(tx) x(‘z)] = .f

-0

jl X, xzp(xl,xz) dx,dxgy (A-43)
-0

where x, and x, refer to the values of the function at instants t, and t, respectively, and
p(xy,%,) is the joint probability density function. Comparing (A-43) with (A-36), the autocor-
relation function determined statistically is equivalent to the covariance, except for a bias
factor. If the random process is stationary, its statistics and conseguently, autocorrelation
function, will not depend on the particular values of t, and t, but only on the time difference
T=ty ™ t)

In the case of temporal representation, the autocorrelation function of a member of a
random process is defined as
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T
W) = limit = j X(t) x(t + 7) dt.
T

T

(A-44)

In general, (A-43) and JA-44) will not yield identical results. However, if the random
process is ergodic, the ensemble statistics and time statistics coincide, and the autocorrela-
tion functions obtained are equivalent, In fact, this can be used as a definition of ergodicity.

It may be seen from (A-44) that the autocorrelation function for = = 0 is the mean-square
value of x(t), while its value for a random process for 7 ~ » is the square of the mean value.
J(7) is usually a damped function of = and while it does not define a process uniquely (unless
it is Gaussian), it can provide an indication of its "time-constant." The autocorrelation func-
tion also has the properties

¢
Wl

¥(-7)
*0).

These features of the autocorrelation function are illustrated in Figure A-3.

(A-45)

1A

W)

DC POWER

Figure A-3 - General autocorrelation function

The definition (A-44) may be applied to an arbitrary function of time as well as to a
sample function of a random process so long as the indicated limit exists. If the function x(t)
is periodic and can be represented by a Fourier series, i.e.,

x(t) = Znneinwot (A-6)

then the autocorrelation function using (A-44) is found to be

wT) = D: + 2 Z IDn|2 €Os nuw,T . (A-46)

n=1
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The autocorrelation function of a periodic function is comprised of its dc value squared plus
all of its harmonics. Notice should also be taken of the absence of all phase angles. All
periodic time functions which have the same Fourier coefficient magnitudes and periodicities
also have the same autocorrelation function even though the phases of their Fourier compo-
nents (and hence their actual time structures) may be different. This indicates that there is a
""many-to-one'" correspondence between time functions and autocorrelation functions.

The autocorrelation functions discussed previously have been associated with waveforms
having infinite total energy content, that is, continnous periodic or random functions. Study of
such waveforms, unbounded in either time or frequency serves primarily to facilitate under-
standing of the mathematical analyses available. Functions that contain a finite amount of
energy, that is, energy-bounded functions, are of greater practical significance. Their auto-
correlation functions are actually simpler hbecause there is no difficulty with limits,

wiry = | xctyxct + 1) d, (A-47)

a8

POWER SPECTRUM

If » watts is the average amount of power dissipated in a one-ohm resistance and if the
portion of 7 arising from the components having frequencies between f and f + df is denoted
by Ww¢f)df, then

n = fwu)df = &) (A-48)
[v)

and W(f) is called the power spectrum of x(t). W(f) is the spectrum of the average power and
has the dimensions of energy.

If x{t) is a periodic function of period T having a finite amount of energy per period,
using Parseval's theorem, the power spectrum consists of a series of impulses at the compo-
nent frequencies of x(t), each impulse having a strength equal to the power in that component.
Thus, the power spectrum is a measure of the distribution of the power in x(t) as a function
of frequency, and for a periodic function is given by

W) = Z jnnli’s(f -~ nf ) f, = % (A-49)

ne.®
where D_ is the complex Fourier coefficient given by (A-7). The total power in x(t) is

5 T
[weni = 37 o= 4 [ [xxofar. {A-50)

-® ns.®

When dealing with a random process comprised of an ensemble of functions the power
spectrum W(f) may be characterized by statistical variation from member to member., While
it may be completely determinate for any one member of the ensemble, it cannot be plotted in
the limit T - «, since adjacent values W(f) and W(f +df) will be uncorrelated. It is necessary
to reduce these random variations and "smooth' the spectrum from one frequency to another.
The resulting description is a "mean-power spectrum.” In order to affect a Fourier analysis
of a continuous random function x(t) which would have infinite energy content, it is necessary
to define an auxiliary function xr(t) as

x(t) when 0 <t <T

xp(t)
=0 elsewhere. (A-51)
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The function x{t) may now be subjected tc Fourier analysis, and as T - o, those properties
of x4(t) which approach limiting values will alsc be properties of x(t). The Fourier trans-
form of x(t) is given as

T

X(£) = fxr(t)e'“"“dc - -fx(t)e'”"“dt. (A-52)

]

Thez mean-power spectrum of x(t) is defined as

P 2
" = timie 2XHOC (a-53)
Towm

where we ronsider only values of f > 0 and assume that this limit exists. W(f), as defined, is
a measure of the frequency distribution of the power in the function x(t) which extends from
t = -o tc t = +o. However, this definition is useful only when x(t) has nc dc component or
periodic terms, Whenever a random function can be considered as a superposition of dis-
turbances x(t) delayed by varying times so as tc form a sequence which is "random in time"
with a mean rate A, then the mean-power spectrum becomes

WD = a2|x(H|? f£0. (A-54)

The behavior of W(f) at f = 0 is like an impulse function, for it approaches infinity in such a
way as to enclose a finite area.

The information contained in (A-53) or (A-54) as well as in the power spectrum previcusly
defined is less than that in an amplitude-phase spectrum since the phase information has been
removed. Any systematic variations are alsc smoothed cut in the derivation of a mean-power
spectrum, This is the main advantage of working with the power spectrum. That is, by
supressing information about the phase, results are obtained independent of the origin of the
time scale. A random function can be represented by its mean-square value, the autocorrela-
tion function or mean-power spectra. Whether these representations are "adequate' will
depend on the particular application. In many instances they are used because olher repre-
sentatiocns may not be available or would be too complex. For some, however, they may be
entirely adecuate. Figure A-4 shows the autocorrelation function and power spectrum for
varicus noise fluctuations having equal noise power.

A fundamental thecrem in correlation and spectral analysis is the Wiener-Khintchine
Theorem which states that if an arbitrary function is amenable to Fourier analysis, then its
autocorrelation function and power spectrum are cosine Fourier transforms of each other. It
is this which makes the autocorrelation function such a useful dcscription, that from it we can
determine the power spectrum which is cften of real interest. The relationship may be writ-
ten as

() = fwu) cos 2nfr df (A-55)
0
WE) = 4 ftﬁ(f) cos 2nfrdr. (A-56)
o

Clearly, if the function is random, we would consider the mean-power spectrum. It should be
noted that the Fourier transformations (A-55) and (A-56) are expressed in terms of cosines
instead of exponentials because both %(f) and y(7) are real and even functions.

CROSSCORRELATION FUNCTION

A very important type of correlation is that between two arbitrary functions. This is
called the crosscorrelaiion function and may be cbtained by performing a time or statistical
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average of the product of the value of one function at some instant of time with the value of the
other function at another instant of time.

For stationary random functions x(t) and y(t) having the joint probability density function
p(x, y), the crosscorrelation function Yy at the instan:s t, and t, is given by

Yay(T=ty=t;) = E ["(tl)y(‘iz)] = f X} ¥2P(X1.yz)dx;dy, . (A-57)

g 8

If we average temporally, Yy i8 defined as

T

1
Yo () = limit 5= J.x(t)y(t + 7)dt,
xy Tl 2T J

(A-58)

For ergodic functions, both definitions yield identical results.

If the two functions are periodic having the same fundamental frequency, crosscorrelation
retains the fundamental and only those harmonics which are present in both, together with their
phase differences. All periodic time functions which have the same Fourier coefficient mag-
nitudes and periodicities with fixed relative phase between the functions will have the same
crosscorrelation functions. Thus, similar to the case for autocorrelation, the correspondence
between time functions and crosscorrelation functions is a ""many-to-one'' correspondence.
Figure A-5 illustrates the cros: ~~.relation function of two periodic functions.

When the two functions are incoherent, such as two stationary random functions which are
independently generated, crosscorrelation produces a constant, independent of 7, which is a
product of the individual 11ean values of the functions. Although the autocorrelation and cross-
correlation functions are somewhat similar, the crosscorrelation function retains relative
phase information, and hence it is necessary to specify whether x(t) ci y(t) is taken at the
displaced time t + 7. In general,

Yyx(7T) = limit -,% J y(t) x(t +7) dt (A-59)
T “ -
need not be the same as ¥,y(T). The crosscorrelation function is an even function and has the
property
Yuy(T) = Py (-7 . (A-60)
Additionally,
[y (T S Vex(0) ¥y, (0) (A-61)

where ¢_, (7) and Yyy(T) are the autocorrelation functions of x(t) and y(t), respectively.

CROSS-POWER SPECTRA

If x,(t) and x,(t) are both zero outside the interval 0 <t <T, then the cross-power spectra
W, ,(f) is defined as

X (-£) X (f) *
_1__.__1__2__ - W21( £) (A-SZ)

Wy (£) = limit
T
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Figure A-5 - Plotof crosscorrelation function y;,(7) of the periodic functions x3(t) and x,(t)
where
T
X (f) = f xy(tye " at
0
(A-63)
T
-jot
X(f) = j x(t)e dt
0

The cross-power spectra are seen to be conjugate complex numbers. The real parts
are even functions of frequency while the imaginary parts are odd functions of frequency.
Therefore, W;,(f) may be written as
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where U,,(f) and v,,(f) are real and

U o(-f) = Up(f) = Ug(f) (A-65)

Via(~f) = =Vy(f) = Vu(f) . (A-66)

If x;(t) and x,(t) are incoherent, then W,,(f) = 0 for all frequencies, although the con-
verse is not necessarily true. If W,.(f) does not vanish at some frequency f, the functions
are partially coherent. For |W;y( f)T = W,(f)Wy(f) the coherence is total in the second order
sense for nc  -Gaussian sources and totally coherent for jointly Gaussian pairs. Ir in addition to
this condition, W,,(f) equals the real quantity U;.(f) at all frequencies, then the sources are
said to be colinear. Then, for a positive U,,(f), the phase will be additive and for a negative
U, ,(f) they will subtract.

If there is total coherence and W,,(f) equais the imaginary quantity jv,,(f) at all fre-
quencies, the sources are said to be in quadrature, indicating that a 90° phase shift exists
between components at the same frequencies. A positive value of V,,(f) indicates that the
x,(t) component lags the corresponding x,(t) component by 90°, while a negative V,,(f)
indicates a corresponding leading phase angle. Thus, cross-power spectra provide measures
of coherence between two arbitrary functions and is shown in Figure A-6 for specific periodic

functions.
(a)
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x,(t) = B cos w,t
/ TR /-\
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Figure A-6 - Plot of cross-power spectra W, o(f) of the
periodic functions x,(t) and x9(t)
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The Fourier transform of the crosscorrelation function is the cross-power spectrum. The
Fourier transform pair is given by

Weof) = 4 fwlz(v) cos 2nfrdr (A-67)
°
¥2(7) = fw12(f) cos 2nfr df . (A-68)

0

Both functions may be used to describe the degree of coherence between two arbitrary time
functions, and either function may be determined from its conjugate mate by performing a
Fourier inversion.

MEAN-SPECTRAL CORRELATION FUNCTION

Completely random processes have random amplitude and phase spectra. If the amplitudes
are uncorrelated then the power spectrum is discontinuous at all points and the Fourier sine-
cosine series have real coefficients which are statistically independent. However, since W(f)
does not depend on phase, the power spectrum and the autocorrelation function provide a meas-

ure of the correlation between amplitudes.

The mean-spectral correlation function »(f) provides a description of noise present in an
unvarying amount and noise which is switched repeatedly or "modulated” in some arbitrary
manner. This is defined for a given function x(t) as

7O -3 I X(P) X (¢~ f) do (A-69)

where B is the bandwidth of the spectrum X(¢) and the asterisk denotes the complex conjugate,
and the bar indicates a statistical average.

As indicated previously, the phases of Fourier components of completely random processes
are random and uncorrelated. If correlation is present, then this is an indication of something
systematic in the process and the mean-spectral function will have a finite value. There are
other ways in which phase correlation may be described, such as through higher moments of the

probability distribution of the process.

The Fourier transform of the mean-spectral correlation function ¥(f) is
3{3D} = §*%O (A-70)

which is the mean-square valuc of the waveform per unit bandwidth. Hence, the mean-spectral
correlation function distinguishes a time variation in average power which results in a correla-
tion of the amplitude~phase spectrum.

JOINT AUTOCORRELATION FUNCTION

A time-frequency representation attempts a simultaneous description of both the time and
frequency behavior. Certain aspects of the interrelationships between the conjugate domains
can be quantitatively described by the joint time and frequency autocorrelation function. In
order to illustrate the significance of a “joint correlation” description, consider the complex
signal f(t) = s(t)eiA(*) having the Fourier transiorm F(f), s(t)and A(t) representing the
variation of amplitude and phase with time, respectively.
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If the signal is displaced in time only, the temporal autocorrelation function (73 is obtained
as follows:

f(t) = s(t)elB(t) (A-711)
hence,
f(t + 1) = s(t + 7T)el Blter) (A-172)
¥(¢7) is defined by (A-47) as
w(r) = f FOt) £t + 7)dt (A-47.a)

-0

(the “delayed” complex conjugate has been introduced to account for the signal being complex.)
Substituting (A-71) and (A-72) into (A-47.a),

©

Y(Ty = f s(t) s(t +T)e

-

-ilsceany-aeol (A-13)

If Act)is a linear function of time, say at, (A-73) reduces to the correlation function for the
amplitude variation s(t) muiltiplied by e-ier, thus adding a linear phase 6 = -ar to the descrip-
tion. This is written as

@

YTy = emar f s(t) s(t + 7y dt. (A-74)

-%

If the signal is displaced in frequency only, it may be described by the phase correlation
function, G(¢), defined as

G(¢) = fp‘(f)l-‘(f+¢)df (A-175)

where ¢ denotes the shift in frequency. The phase correlation function of a random process may
be averaged over the ensemble of functions, with a resulting statistical average phase correla-
tion function that is proportional to the mean-spectral correlation function of the process.

If the signal is displaced both  time and frequency, f(t) becomes
£(t + 7,) = s(t + 7yed [B(ter) + 2ng(ten)] (A-176)
The complete temporal autocorrelation function y(7,¢) is then
Wr.¢) = f £() £7(t ¢ 7, ¢)dt (A-77)
Performing the substitutions indicated in (A-77),

e . A . (A-78)
f s(t)e“s(t) s(t+T)e H{ACteT) + 2me(tsm)) dt

-

w(T, $)

[ ]
1BCE) -iB(tem) -i2me(tiry o (A-79)

f s(t)s(t+T) e




Let t + v = x and dt = dx. (A-79) then becomes,

f s(x-T)s(x)e

IB(x=T) ~1BC(x) -idmex (A-80)

W7, P)

f f(x) £5(x +7) e-n"éxdx. {A-81)

Equation (A-81) indicates that the correlation functipn of a complex signal which undergoes a com-
bined time and frequency shift, denoted by = and ¢ respectively, may be expressed in terms of
waveforms of time and time displacement only, and an exponentially periodic term representing
the shift in frequency. The joint autocorrelation function y(r,¢) is defined by

Jﬂ F(t) F*(t+T) e

LI (A-82)

WwWT.d)

f?‘(f)F(f vy e 1 (A-83)

A characteristic of the joint-autocorrelation function is that the volume under the surface
described by its envelope, |[¢(7.#)|?, is a constant, i.e.,

f .| drde = C. (A-84)

a8

The constant C is invariant for all waveforms and has been designated as an "absolute struc-
tural constant."” For a waveform f(t) that is normalized such that

f [fce)2de = 1 (A-85)

-
then C, the structural constant, is unity.

Similar relationships can be derived for two functions. For iwo complex waveforms f(t)
and f,(t) having Fourier transforms F,(f) and F,(f), respectively, the joint crosscorrelation
function ¥, (7.¢) is

YT ) = I F ) et rmy e P ar (A-86)
= j FR(EIF (f+) AT (A-87)

With the energy in the waveforms normalized to unity,

J |f1(t)|2dt = j |f2(t)|2dt =1 (A-88)

the volume under the cross envelope l\pn('r.<¢>)|2 becomes
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[$1o(7 )| drde = 1. (A-89)

g e
—8

8

The joint envelopes of Gaussian pulses are illustrated in Figure A-7. It is seen that if
there is no modulation, the major spread will occur along the r-axis or ¢-axis, depending on
the length of the pulse. However, for linear frequency modulation, the major spread will occur
at some angle between the major axis of |y 2 and the r-axis, depending on the complex fre-
quency. A characteristic of linear frequency modulation is that the joint correlation function
Y(T,¢) is not separable, i.e.,

W, ¢) F TGS . (A-90)

The modulztion has introduced a correlation cr dependency between the two domains and it
appears possible to obtain a wide |f¢t)|Z and a wide [F(f)|’ as shown. However, the phase
dependency is not shown by |[F(f)|2. Consequently, this is not a contradiction of the indeter-
minate relationship which exists between time duration and bandwidth, Modulation consists in
a sense,ofa set of sequential operations, and the indeterminency hae merelybeen redistributed.
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B. EFFECTS OF BOUNDS ON FUNCTIONS
1. INTRODUCTION

Thus far, we have discussed representing the structural properties of various functions
without imposing restrictions upon them. However, restriction: are inherent characteristics
of all real signals and a meaningful analysis is one which accci.r.cs for their effect on observed
results. The fundamental restrictions are those imposed by finite bandwidth and finite time
duration, either separately or together.

The imposition of a bound on a continuous function implies transforming it into a set of
discrete data comprising a finite or an infinite number of coefficients. This is called sam-
pling. For a one-to-one transformation to exist where each function will correspond to one
and only one sequence of coefficients, the functions under consideration must be properly
restricted. It is these restrictions that permit a function to be determined in any domain when
only a related set of discrete data is known. A continuous interpolate may be constructed from
the discrete data to give a satisfactory replica of the original function. The interpolation tech-
nique selected will depend on the urcoverties of the actual function to be distinguishked, and in
turn on the criteria used, such as minimizing the mean-square error or minimizing the
maximura error,

The primary purpose here is to show the basic similarities and differerces of useful
representations when the functions are bounded in time, frequency, or jointly. Unbounded
functions contain a finite amount of power whereas bounded functions are "energy bounded."
The selection of a particular description will depend not only on the specific application but
also on the types of bounds imposed. Improved visualization, or easier computation and more
economical instrumental realization can result from the proper selection of a description.

2. TIME LIMITS

UNIFORM SAMPLING

A function f(t) which is continuous in a finite time interval and zero elsewhere can be
represented by discrete values in terms of its spectrum. Owing to its importance in infor-
mation processing, this relationship will be derived following the presentation employed by
Woodward (Ref. B-2.1), The following steps are taken:

1. representing a function in a particular interval by a periodic functioa having the length
of the interval as its period,

2. representing the Fourier spectrum of the original function by the frequency composi-
tion of the periodic function, and finally,

3. introducing an auxiliary function and developing a sampling theorem and associated
composing function in the frecuency domain.

Let f (t) be a periodic function having a period equal to f(t) in the interval - T/2'<t <T/2.
Then

f,(t) = pe T (4-6)

nw-©
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where

T/2

-§ an nt
f(tye T (A-T)

o
n
I

-T/2

Due to the above restriction f(t) is completely determined by f (t) and consequently its
Fourier spectrum F(jo). is given by the frequency composition of the periodic function:

F(jw) = Fy(jw) = ). D,. (B-1)
Since the Fourier spectrum F(jw) of f(t) is formulated as
F(jay = I ftye 1t at (A-11)
T/2
= £.() e %t at (B-2)
~T/2
by comparing it with (A-7) it is evident that D, may be expressed in terms of F(jw):
p. = L F(jw)
n T s _ 2nn (B‘3)
w ﬂﬂn = _T—
= Lp(; 2m -
| = 7 F (] T ) . (B-4)

This shows that the spectrum of f(t) is proportional to the coefficients D, in the Fourier
series representation of f (t) for values f = n/T. The spectrum of f (t) isa line spectrum:

i = 3 m = 400 w( ) - 3 ) riers (o B2). @-

From (B-1) and B-5) it is seen that the spectrum of f(t) may be expressed as a series of
| impulses at values of frequency equal to n/T whose strength is that of the spectrum evaluated
at the corresponding frequency divided by T, where T is the duration of the waveform, f(t).

By introducing another auxiliary function, f(t) may be represented by f (t) for all values
| of time, that is,

f(t) = () e(t) (B-6)
| where fp(t) is now given by
® . 27n
(0 = T Z F(i 3%'_) ST (B-)

and g(t) is defined as

g(t) =
0 elsewhere

{1 for |t] <T/2 B-8)
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whose spectrum G(jw) is

sin (@T/2) (B-9)

G(jw) = 2

From Fourier theory, the spectrum of a product of two time functions is the convolution of the
two separate spectra, Thus

F(jw) = fr,,a,é)c(jw-jmdﬁ. (B-10)
Substituting (B-5) and (B-9) into (B-10)
1 R 2mn sin (m-ﬁ)% B-11
F(jo) = % | ZrcimS(ﬁ-T)—i———dﬁ (B-11)
pr . 'f(w'ﬁ)
which results in
n sin (w-27 2 =
Fiwy = 3. F(; 20) T( §)2 (B-12)
7{o-27%)

This is the sampling theorem in the frequency domain and expresses a continuous spectrum in
terms of an equivalent line spectrum.

In general, if a time-limited signal is zero everywhere in the range T, < t < T,, then its
Fourier spectrum may be completely determined by giving its values at an infinite set of
sample points spaced 1/(T, - T,) ¢ps apart in frequency. Sampling the spectrum of a time-
limited waveform at this rate is equivalent to expressing it in terms of the coefficients of a
Fourier series expansion of the waveform. The spacing between sample values controls the
largest value of the conjugate variable (time), while the number of samples determines the
order of the highest harmonic term in the Fourier series expansion.

INSTANTANEOUS POWER SPECTRUM

If a stationary random function is suddenly applied to a network and it is required to
determine its power spectrum at some time T after it started, then if T is not sufficiently
large the spectrum measured will not be identical with the power spectrum represented in
section A.3. Instead, it will change with time until it is no longer dependent upon the starting
time of the process. This behavior may be represented through the concept of the instanta-
neous power spectrum, as defined by Page (Ref. B-2.4).

Denote the energy density in the time-frequency plane by %(t,f). Then the total energy
expended up to a time T will be given by

T ®

f I Wt,£)df dt . (B-13)
1]

The instantaneous power is defined as the rate of increase of the total energy and is thus
expressed by differentiating (B-13),

instantaneous power = f W(T,f)df . (B-14)
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Comparing (B-14) with (A-48), w(T,f) is defined as the instantaneous power spectrum at any
instant T.

If a signal f(t) is switched off at time ¢ = T, in order to apply Fourier analysis define
the "running transform' of f(t) as the transform of a continually changing auxiliary function
f,(x) such that:

f(x) for x <t
f (x) = (B-15)
t { 0 for x>t
[ t
S(f) = I £y e 7 ax = J f(xy e 2" Fax . (8-16)

The auxiliary signal will be identical with f(t) up to time T, and therefore wiil deliver the
same energy as f(t). It should be noted that in (B-15) and (B-16), x is the variable of inte-
gration and t is any time T. As a result of Plancherel's energy theorem and (B-14), the
instantaneous power spectrum must satisfy the following relationship

t
IW(x,f)dx = lst(f)l2 (B-17)

which is sufficient to determine ¥%(t,f). Differentiating (B-17) with respect to time gives:

we.£) = (¥ |sH]? (B-18)
t

= 2f(t) J f(x) cos 2mf(x - t)dx. (B-19)

The mean power spectrum W(f) of a member f(t) of an ergodic random process [f(t)]
may be expressed as

() = 2 J F(E) f(t+7) cos 2nfrdr. (B-20)
o .

By placing f(t) inside the integrand in (B-18), changing variables, and assuming f(t) to be
switched on at t = 0, (B-19) becomes

.
W, f) = 2f f(t) f(t +T) cos 2nfrdr . (B-21)
]

If (B-21) is averaged over the ensemble,

-

We, D) = 2 || F(©) It +7) cos 2nfrdr . (B-22)

e

Since the time and statistical averages of an ergodic process are equivalent comparison of
(B-22) with (B-20) shows that the stochastic average of the instantaneous power spectrum
asymptotically approaches W(1). Equation (B-22) shows how the power spectrum of the
process develops in time.

The instantaneous power spectrum W(t,f) isnot unique. Reference B-2.5 shows that it
can have added to it a complementary function of frequency W (t,f) satisfying




-
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fwc(t,f)df =0 (B-23)

without changing the original signal. If the instantaneous power spectrum of the same signal
is derived by two independent observers, then at any time during the period of observation
common to both observers the instantaneous power spectra may differ by the complementary
function. Conversely, if over any interval of time, two instantaneous power spectra differ only
by a complementary function, then the corre sponding signals are identical during the interval
of time.

RUNNING AUTOCORRELATION FUNCTION

It is now of interest to examine the relationship the instantaneous power spectrum has
with a correlation function which denotes the time bound, Using (B-18) we get

W, f) = (3/3t)|s(f)]? (B-18)
= (¥/3) S(F)SYUT) . (B-24)
From (B-16) we have,
_ ( ~j2mfx ( +ji2nfs (B-?.S)
W(t,fy = (3/3t) fo(x)e dx fs)e ds
= (3/3t) f f £o0x) fo(s) e 2O e (B-26)

The auxiliary function f¢(x) is used and not the actual signal f(x) so the integrals above will
have infinite limits. If we let x-s = 7, (B-26) becomes

W(t.f) = (3/3t) f I fo(x)fo(x-7) e.“""dxd-r (B-27)
. (a/at)f l:f £,(x) f (x =) dx:,e"z"'.'d-r. (B-28)

With reference to (A-47), the bracketed term in (B-28) is the temporal (finite energy) auto-
correlation function of f,(x) or the "running autocorrelation function" ¥(7) of the signal f(x).
Placing (3/3t) inside the integrand, W(t,f) may now be expressed as

W(t,f) =I [(3/oty yo(my] e 12" ar (B-29)

and is the Fourier transform of the time rate of change of the running autocorrelation function.
This is the Wiencr-Khintchine relationship as applied to energy-bounded functions havingtime-
dependent power spectra.

If the signal is a nonstationary time series, ensemble rather than time averaging must be
employed. The bracketed term in (B-28) can no longer represent the autocorrelation function.
If we take the statistical average of both sides of (B-27) and carry out the indicated differen-
tiation, we have .
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W(e,f) = I¢(t.f)e"2"f'df (B-30)

where
We,m) = f(t) f(t - 7). (B-31)

Equation (B-30) is the Wiener-Khintchine theorem as applied to power-bounded nonstationary
waveforms.

ORTHOGONALIZED EXPONENTIALS

A sinusoidal representation describes signal ensembles whose amplitudes do not vary
with time. Moreover, a decomposition into sinusoidal components is appropriate whenever it
is desired for the elementary signals to be invariant under translation in time, that is, when
we do not have to characterize the epochs or instants of time at which the signal components
are created. A Fourier representation is very useful in describing the time averaged proper-
ties of a system or signal ensemble. However, it is not well suited for discrimin>ting between
signals or for detecting the occurrence of a particular signal against the background of a noise
ensemble.

It is often necessary to characterize a signal by both its epoch and structure. Specifying
the epoch is required in determining phase inforination. Analysis of information-bearing
signals is also concerned with a discrete representation of low dimensionality and a means of
evaluation of performance which relates physical measurements with mathematical theory. A
method for obtaining these features is to represent a signal by specifying the generator of that
signal. Since this entails an understanding of the basic physical mechanisms involved in the
generation of the signal, the parameters of the representation will acquire a deeper signifi-
cance and meaning.

If £7t) is an impulsive excitation to a signal generator characterized by the response
h(t,7) to a unit impulse applied at time T, thie resulting response s(t), or desired signal, may
be expressed as

®
s(t) = me h(tiT)dr. (B-32)

The problem in signal analysis would be to recover from the observed signal s(t) a specifica-
tion of the excitation function f(7) and of the system function h(t,7).

The signal generator impulse response h(t.7) is best characterized by its natural fre-
quencies p, which appear in the exponent of terms having the form

Ay ep“( ter) (t>1) (B-33)

where T is the epoch. In practice, the p, parameters are quite difficult to determine, whereas
the amplitude coefficients are easily determined once the exponential factors are known. This
suggests selecting another set of exponentials s, to approximate the original set, leaving the
epochs and amplitude coefficients to specify the impulse response. For a class of functions
formed from damped exponential components, such as (B-33), a small number of preselected
damped exponentials which cover a region in the left side of complex-frequency plane may
provide a good approximation to any exponential having a frequency within that region. No
such approximation is possible for a class of functions formed from sine waves.

The problem of characterizing the system function h(t,7) is to establish an appropriate,
discrete set of exponentials that will approximate with allowable error over a semi-infinite
time interval the actual system fwiction, i.c.,
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h(t,7) = ZAk(T)e’k("’) (t>7)
k

=0 (t<7). (B-34)

The variation of h(t,r) is then accounted for by the variation of the amplitude coefficients
A(7). The error criterion used is the mean-square error. It is desired that the component
functions be uncorrelated or orthogonalized, otherwise a change in the amplitude of one may
be more or less neutralized by changes in the amplitudes of other components.

In general, a frequency-domain analysis implies the sp. cification of the amplitudes of
many different waveshapes, all having the same epoch. A time domain analysis, however,
specifies the amplitudes of many different components, all having the same waveshape but
differing in time of occurrence. It is readily seen that a representation using orthogonalized
exvonentials is a time-demain representation.

To conclude, the method discussed represents a signal by the convolution of two functions.
The first characterizes the temporal attributes of the signal by the epochs and intensities of
the impulses comprising the function. The second function characterizes the structural
attributes of the signal by the impulse response of a generator. The impulse response is then
approximated by a sum of a number of crthogonalized exponentials corresponding to the natura?
medes of the generator.
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3. FREQUENCY LIMITS

BANDLIMITED FOURIER SERIES

Fourier series representation converts a continuous function having a finite number of
discontinuities into an infinite series of discrete terms. When the series is bandlimited it
comprises a finite number of terms such that the coefficients A, and B, are zero for indices
greater than a given number N. It is necessary only to consider the first 2v + 1 coefficients.
For period T, frequency (N+1)/T has a zero coefficient and N/T a coefficient of finite value.
The limit in frequency ¥ is set halfway between the two:

- (51%-‘ + %)—} (B-35)
- MTLE . (B-36)

The bandlimited Fourier series can then be considered as a finite vector representation con-
taining 2N + 1 or 2WT coefficients.

A waveform periodic with period T, when limited to a band of frequencies less than W,
may be represented by 2WT coefficients of its Fourier series. Clearly, 2WT values, properly
restricted, of the waveform itself will also be a representation. There are a number of sets
of 28T values that form representations which will allow the whole waveform f(t) to be
recovered for the period T. The simplest of the reconstruction geries is the one havinga
ngine-over-sine" composing function, i.e.,

vy
n

f(t) = Z.f(ﬁ— to) —
n= s1in

sin 7 [ZW(t +ty) ~ n]_
m [2W(t +to) = xﬂ (B-37)
2WT

where the coefficients of the composing functions are taken at time intervals spaced 1/2W
seconds apart starting at some time less than 1/2W, t (0 < t, < 1/2W) (Figure B-1(a)).

UNIFORM SAMPLING

If the waveform under consideration has a Fourier transform it can be represented by
orthogonal "sin x-over-x" sampling functions. This is Shannon's sampling theorem (Ref.
B-3.2}, and states that a bandlimited signal whose Fourier spectrum contains no component
above frequency W cps, is uniquely determined by its values at 1/2W-seconds apart. By apply-
ing the sampling theorem to a signal f(t) whose Fourier spectrum is F( jw), the reconstruc-
tion of the signal is given by:

i) = i f(Q—‘;«,)%(v.). (B-38)

The function ¢, (t) is called the composing function for the sample point t = n/2W and is
given as:

_ sin m(2Wt - n) N
Pa(t) = 7( 2Wt - n) (B-39)

The Fourier spectrum of the signal can be expressed in terms of the uniform sample values
according to




RECONST
SAMPL ING PROCESS SAMPL{NG THEOREM
f(t) =
(a)
If a band-i imited Fourier series containing 2WT coefficients can represent a waveform, then
2WT values, properly restricted, of the waveform itself will also be a representation. The 2T
simplest of the many possible reconstruction series is the one having a "sine-over-sine” compos- A4 = f(,,__ )
FOURIER SERIES BANO-LIMITEO ing function where the coefficients are taken at time intervals spaced I/2W seconds apart start- 2w
ing at scme time less than 1/2W, t. n=1
o< tg
(b)
| f the waveform under consideration has a Fourier transform it can be represented by an
UNIFORM:  LOW-PASS orthogonal set of "sin x over x" sampling functions. Shannon's sampling theorem states that
a band-limited (0,W) signal whose Fourier spectrum contains no comoonent above frequency W ©
cycles per second is uniquely oetermined by its values at an infinite set of sample pointy f(t) = ; § (2"_") sl
spaced at 1/2W seconds apart. ‘,',:_"m
(c)
1f a complex wavefor. f(t) has its Fourier spectrum confined within the positive frequency
UNIFORM: HIGH-PASS interval (f, = J % fo+ 3 W) where £, 2 7 W, then it can be uniquely determined by its conplex
values at intervals I/W. 1f f(t) = g(t) + jh{t), then the purely real weveform g(t) may be i sin
n
recovered by specifying the amplitude /g(£)2+ h(t)2 and the instantaneous phase angle tan~%(h/g) f(t) = z f (7) -
at each sampling point; i.e., the envelope and phase of the carrier. n=-o
(d)

OERIVATIVE

If a function f(t) contains no frequency higher than W cycles per second, it may be
determined by evaluating the function amplitude and derivatives at an infinite set of sample
points spaced (K+ 1)/2W seconds apart, where X is the order of the highest derivative when

all lower ordered derivatives are observed in each sample.

First derivative: X =

Figure B-1l - Several periodic sampling techniques for bandlimit
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A
2

F(jw)

jw] > 27W. (B-40)

[=3

It is seen that sampling a bandlimited function at the Shannon rate is equivalent to expressing
it in terms of the coefficients of a Fourier series expansion of the spectrum (Figure B-1(b)).

The process of periodically sampling a function f(t) instantaneously is the same as mul-
tiplying the function by a train of impulses of unit area which are spaced uniformly at intervals
equal to the sampling time, i.e.,

f(t)* = Z £(t) 5(t - n/2W) (B-41)

where f(t)" is the sampled series. The waveform can finally be recovered passing f(t)*
through a low-pass filter whose impulse response h(t) is

h(t) = sin 27Wt _ $.(t)

27Nt (B-42)

n=0

A complex waveform f(t) whose spectrum is confined within the positive frequency
interval (f, - 1/2W, f, + 1/2W) may be uniquely determined by its complex values at mtervals
1/W. The reconstructlon formula for this case is given by

f(t) = Z: (§) 2o pte=ed oxp {j'hrfo(t - %)}. (B-43)

In order to apply (B-43) to a real waveform, it is only necessary to take the real part of both
sides. If f(t) = g(t) + jh(t) we obtain for g(t)

at) = ) a(§) HEASD cos ant (e -nm)

n®.®

_ n\ sin m(Wt -n) _ -4
Z h(W) ——-—-—————-"(Wt = sin 27f (t -n/W) . (B-44)

)

Equation (B-44) means that an amplitude +g%(t) + h%(t) and an instantaneous phase angle
tan-1(h/g) must be specified at each sampling point. They represent the amplitude and phase
of the carrier. For a bandwidth W,g(t) anu h(t) must both be specified at intervals 1/W%, and
the total number of degrees-of-freedom in a high-frequency waveform in time T is 2%Wr. This
is the same as for a low-frequency waveform, although the sampling interval is twice the latter
{Figure B-1(c)).

The concept of sampling also provides physical meaning to an exact bandwidth limitation.
The Shannon expansion shows that a bandwidth-limited signal f(t) is entirely defined by the
sequence of values f,, f,,..., f,,... taken at regularly-spaced times t_, t, + T, ..., t, +nT
{with T = 1/2¥%). The 1mposition of an exact bandwidth limit on a general 51gnal implies that
the only values of the signal taken into account are those at the uniformly-spaced times deter-
mined by the Shannon rate. This means that if different signals take on the same values at
these times, they are no longer distinguishable after being filtered by an ideal filter. Mathe-
matically, a bandwidth limitation permits a continuous function be replaced by an enumerable
sequence. Physically it permits transmission of information more economically with a con-
servation of bandwidth.
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Two sampling theorems that find extreme importance in signal processing when th .
samples are taken at regular intervals and are independent of the exact times of sampling
are the following:

1. Encipherment

The magnitude of each sample may be varied in an arbitrary manner without increasing
the frequency range of the samples. ’

2. Relation between mean square 9f signal and its samples

If the square of the signal does not contain a component of frequency equal to some
integral multiple of the sampling frequency or two components such that their absolute sum
or difference are also some integral muitiple of the sampling frequency, then the sum of the
average of the squares of the samples will be equal to the mean-square value of the sampled
wave.
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4, JOINT TIME AND ‘FREQUENCY LIMITS

INTRODUC TION

Thus far, we have discussed descriptions of functions bounded in time or frequency and
functions not restricted in either of the domains. The descriptions were found to depend on
the type of functions considered. For an unbounded funciion, periodic or random, the energy
content is infinite which suggests that a power description is more meaningful. A transient
contains a finite amount of energy which implies that we use energy descriptions. When the
functions are time or frequency limited, the concept of sampling permits obtaining a complete
representation. A time-limited function would be represented completely by an infinite num-
ber of samples of the spectrum. Similarly, a frequency-limited function would theoretically
extend over all time and would be represented by an infinite number of time samples. When
the function is both time and bandiimited, we can no longer represent the function by an infinite
number of independent samples in either domain. The representation will always be an
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approximation, its value depending on the number and type of elementary functions used in the
decomposition. Therefore, the primary difference between a function time or bandlimited and
one limited both in time and frequency is that the former mav be represented either approxi-

mately or completely, while the latter can only be represented through an approximation.

Theoretically, it is not possible to construct a Fourier pair, not equivalent to zero, which
has the property that the function and its transform both vanish in any {inite intervals of the
conjugate variables. This will be shown following the preoof by Wernikoff (Ref. B-4.1).

If a signal is bandlimited such that its spectrum F(f) vanishes outside tﬁe irequéncy
interval (-w,wW), i.e.,

F(f) = O for f>|W| ' (B-45)
it can be represented by an infinite sum of sin x/x functions:
f(t) = Z o 3in (24t -n) (B-46)

n TTh(2We - n)

where a, is determined by examining the signals at times, t, separated by intervals of 1/2V.
That is

a, = f(t) = f(l). (B-47)

n

If f(t) is limited to (0,T), the only samples that are not zero are those taken in (0,T). Then
f(t) will be given by a finite sum of sin x/x functions, so that (B-46) becomes

N
f(t) = Za

n=0

sin 7( 2Wt - n) :
& n(2Wt - n) (B-48)

where N = 2WT samples. However, the assumption that f(t) is limited to (0,T) implies that

N
sin m(2Wt -n) _
Z 8 Ta(2Wt-n) 0 - (B-49)

n®=0

for all t outside the interval (0,T). This requirement states that the tails of a finite number
of sin x/x functions have to combine in such a way that they cancel each other completely
outside the interval. Since the sin x/x functions are linearly independent over any interval,
there cannot exist a set of nonvanishing coefficients a, that satisfy this requirement. That is,
there does not exist any function, not equivalent to zero, limited simultaneously in time and in
frequency.

~ Representations of signals which last for time T and occupy bandwidth W may however be
approximated by 2WT coefficients. Since the sin x/x function falls off slowly, the sample
points determined outside the interval T may affect the signal inside the interval T. It was
indicated that it is not possible to describe exactly a function which has a finite time duration
and finite spectral bandwidth. Actually, physical processes are characterized by having most
of the energy confined within a finite time duration and finite bandwidth. If T is the approxi-
mate duration of the signal and V¥ is its approximatc spectral bandwidth, the signal may be
reconstructed to a high degree of accuracy by its values at 2WT sampling points provided that
2%T >> 1. This product represents the same number of values needed to recover a function
that can be represented by a bandlimited Fourier series.

Sampling is an interpolation and the sampled representation of the function improves with
increase in the number of sample data. When considering only a finite number of samples,
due to sampling over a finite interyal of time T, there will be an interpolation error which may
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become quite large at the edges of the interval. The error inside the interval will be reduced
as the 2WT product is increased. 2¥T samples reconstruct a waveform uniquely only if the
waveform is a repetitive function of period T and the samples are all taken during one period.
Nonperiodic waveforms analyzed for a time interval equal to T will have energy associated
with the function beyond this interval. The magnitude of this energy is a measure of the inter-
polation error.

ELEMENTARY SIGNALS

A time and bandlimited function may be decomposed into a finite sum of elementary sig-
nals. An elementary signal ¢(t), may have no restrictions other than that of having finite
energy and preferably a low TW product. Considera collection of clementary signals ¢_(t)
defired as the successive time translates of ¢(t) by a time interval 6:

$a(t) = Ht-nb) (B-50)

where n is an integer which refers to the time instant t,. If these signals are multiplied by
the periodic exponential factors el2m(m/8)t 3 get of frequency and time translates of #(t),
Pan(t), Will be generated. These functions are expressec. as

'21721: =)
() = Ht-nde © . (®-51)

The effect of a unit change in index n i8 to shift the spectrum of £(t) bya unit of 1/6.

mhig set of functions is complete in the sense that almost any signal f(t) may be writtenas

f(t) = Zamn¢m(t) . (B-52)

m, n

In a time-frequerncy plane, one possible representation is a checkerboard pattern whose lines
cross the time-axis at intervals equal to 6, and the frequency-axis at intervals of 1/6. One of
the a_, is associated with each rectangle or "cell" of the resulting checkerboard (Figure
B-2(a'5). The basic pattern of this representation is set not by the choice of &%), but by the
choice of the translation interval (6). Each 6 will lead to a different way of breaking up a
region of time and frequency. In Figure B-2(b), a TW region of area 9 units is divided equally
in time and frequency. We can also choose 6 so as to divide only the time interval as in Fig-
ure B-2(c). This corresponds to specifying 2 signal by its samples in the time domain. We
might also have chosen 6 to produce the representation shown by Figure B-2(d), that is, a
representation in terms of frequency.

The values of the a,, depend on the choice of #(t) and of 6. However, if the duration of
#t) is almost equal to 6 and its bandwidth almost equal to 1/6, then for any given choice of 9,
the values of the a,, do not vary significantly with the choice of ¢(t). Consequently, the
elementary function &(t) is somewhat arbitrary. #(t) may be selected for its analytic prop-
erties, or the response it produces in a given network, or the understanding it produces con-
eerning a physieal problem.

ANALYTIC SIGNALS

A particular elementary signal which leads to useful concepts, such as instantaneous fre-
quency and instantaneous phase, is the "analytic signal." This is obtained by adding a signal,
properly restricted, in quadrature to a real signal. A real signal f(t) is one whose Fourier

spectrum is completely determined if it is given only ior positive frequencies, i.e.,

F(jo) = F'(j®) (B-53)
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where the asterisk denotes the complex conjugate, or equivalently

[F(e) ]

[F(-je |
arg F(jw) = -arg F(-jw) . (B-54)

If a real function of time x(t) has finite energy, that is,

f x?(i)dt exists and is finite (B-55)

then we may associate a real function y(t) with x(t) such that the function z(u) = x(u) + jy(u)
is an analytic function of the variable u = t + j6.The major requirements for this pair

of functions which make z(u) analytic are:

)

a1 210 *11

%,-1 200 20y

-t
24,1 1.0 TPy
(a)
f f f
I’y ]
>t - t — t
(b) (c) (d)

Figure B-2 - Time-frequency diagram of an arbitrary function
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1. Each function of a pair has the same energy

I x¥(t)dt = I y2(t)dt . (B-56)

9. The functions are orthogonal

I x(t) y(t)dt = 0. (B-57)

3. The Fourier spectra X(j») and Y(jw) of x(t) and y(t), respectively, are related by

Y(jw) = -jiX(jw) when w>0 (B-58)

Y(jw) = iX(jw) when w<0.

Due to restriction 3, the Fourier spectrum Z(jw) of z(t) = x(t) + jy(t) has the properties

Z( jw) 2X( jw) for >0

(B-59)
=0 for w<0.

Consequently, it is necessary to consider only the positive-frequency half of the Fourier fre-
quency axis.

By defining the analytic signal, the concept of an 'instantaneous frequency,"” p(t), may be
generalized, that is

1 d 1 d
by = A L farg x0)] = 5 S (B-60)

where q(t) = tan-! y(t)/x(t) and may be regarded to be the "instantaneous phase." If x(t) is
a cosine wave, then y(t) will be a sine wave of the same frequency and f(t) will be constant,
equal to the frequency of the signals. The definition in (B-60) is similar to that used in the
theory of frequency modulation. The analytic signal may also be used to help distinguish the
relationships between the effective time duration and bandwidth occupancy of signals.

TIME-BANDWIDTH PRODUCTS

The usefulness of the concept of time -bandwidth product is in providing an estimate of the
number of degrees-of-freedom that may be required to specify a signal. The exact value will
depend on the definition of duration employed and the particular signal being analyzed. It is
often desired to resolve a signal into a series of elementary functions to which one, and only
one, of these numbers could be assigned. One way of selecting these elementary waveforms is
so that their time-bandwidth product will be 2 minimum (Ref. B-4.2). Other criteria may also
be established.

If the elementary signals chosen have a constant period, for example, a sine wave, then the
amount of information transmitted in one period will be identical to that in any other period.
However, if the elementary signal is such that the "distance" between the zeros is constantly
changing (as would be the case for a Bessel function) then the information transmitted during
each interval will be continually changing. This may result in a whole "family' of time-
bandwidth products. Consequently, the time-bandwidth product is dependent on the structure
of the zero-crossings of the elementary signals and time-variant or time-invariant elements
are needed for transmission.
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Lampard (Ref. B-4.5), has shown: that by expressing an "equivalent duration' Ar and an
"equivalent bandwidth" Af in terms of the autccorrelation function (1) and power spectrum
%( f) of the signal, the identity

Ar Af = 1 (B-61)

is valid, provided the power spectrum of the signal extends down to zero frequency. For a
transient signal and stationary time series:

[T
——s

Y(r) dr (B-62)
Ar = _— FPosees =
Ww(0)
and
2_[ W(E) df (B-63)
B = 0y

The widths 2A7 and 1/2Af represent the widths of the rectangles having the same areas as
those under the correlation function and power spectrum, and having the same ordinate at 7= 0
and f = 0, respectively. These definitions, (B-62), and (B-63), are particulariy appropriate
for cases in which W(f) < W(0), for all £,

For the case of two nonstationary time series, we may use definitions of time dependent
correlation functions and power spectra given in section B-2. The identity (B-61) is still valid
where

f [U12(t, ) + Ygy(t,m)]d7 (B-64)
Or = 2
[$12(.0) + ¥ (¢.0)]
and
J [w12(t-f) + W21(t,f)] dif (B'65)
af = 2

[Wya(£,0) + Wyy(t,0)]

It is interesting to note that though (B-64) and (B-65) are continuously changing, individually,
for each instant of time, their product remains constant or time invariant. Thus, the time-
bandwidth product presented here for a nonstationary time series is related to that when a
signal is resolved into nonharmc.ic elementary signals. Equations (B-64) and (B-65) reduce
to (B-62) and (B-63) if the time series approaches its steady-state behavior and both time
series are equal.

We can also use a definition of duration analogous to that in quantum mechanics, namely

J’ (x - x0) 2 |s(x)]? dx
(Ax)2 ) (B-66)

@

f [S(x)|2dx

-
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where

b fx|s(x)|2dx°

-

(B-67)

The x is an arbitrary variable, can be time, frequency, displacement, etc., Ax signifies a
duration in x, and s(x) is the Fourier description in the corresponding domain. In (B-66); Ax
has the form of a standard deviation which in engineering terminology is an rms value.
Equivalently, (B-66) may be considered as expressing the spread in x as the variance of
Is(x)]?; x, would then represent a mean value.

If (B-66) is used to calculate the duration 4t and the corresponding radian bandwidth Aw of
a signal, where s(x) is now the waveform and Fourier spectrum respectively, the Schwarz
inequality may be used to give the result
At - Aw > (B-68)

-

Gabor (Ref. B-4.2), showed that the equality holds when the pulses are of Gaussian form; Aw is
then the radian bandwidth required to transmit a complete pulse in time At. If the functions
f(t) are real, then provided tnat F(0) = 0, (B-68) becomes

At Aw, > (B-69)

M

where Aw, is the variance of |F,(jw) | 2, the square of the magnitude of the positive-frequency
spectrum of f(t). By replacing f(t) by an analytic signal, F,(jw) is defined as

F,(jw) = F(jw) w20 (B-70)

= 0 w< 0.

Note the absenue of the equality sign in (B-69). It was indicated above that an equality can be
achieved for Gaussian pulses, but these have negative frequencies in their spectra which con-
tradicts the assumption of an analytic signal. Thus, an equality cannot be obtained. If F(0) f 0,
then Kay and Silverman have shown (Refs. B-4.6and B-4.7), that we may write (B-69) more
generally as

At Aw, > % 1-2|F(0)|? w,, (B-71)

where «,, can be considered te b~ the centreid of the positive-frequency spectrum of f(¢t).

The convolution of an input to a physical element with its impulse response is a degraded
form of the input in the sense that any time-structure which is fine, compared with the ele-
ment's "time constant,” is smoothed out. The time-structure of any waveform may be
expressed in terms of a temporal autocorrelation function; a measure of the smoothness of
the waveform may be described by comparing its values at any two instants of time. It is
also, to some extent, a measure of the "time constant' of the waveform.

Woodward (Ref. B-4.9), used the integral of the square of the normalized autocorrelation
function as a measure of temporal extent. Taking absolute values (i.e., disregarding time
structure), this is expressed as

I W) dr = Irl.

(B-72)

When f(t) and f(t + ) become orthogonal or independent relative to each other, the cor-
relation and consequently (B-72) vanishes. Since this occurs when T is large and the constant
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|r| has the dimensions of time, |r| may be considered iv be a measure of the time-constant
of the waveform, T. We then have

(B-73)

-
n

[ wry12er

or equivalently

@

_f [Feey | *af (B-74)

-3
n

where F(f) is the Fourier spectrum of the waveform f(t). Thus, T is 2 measure of the lack
of orthogonality between the waveform and the same waveform displaced in time. Its recip-
rocal, 1/T, is a measure of the frequency spread of |F(f)} 2,

Similarly, a "frequency constant,” F, for any spectrum F(f) may be written as

F = I 16(#) | ag (B-75)

where G(¢) is the phase correlation function defined by (A-75). Equation (B-75) may also be
expressed in the form

F = f |f(t)|‘dt.

(B-76)

Thus, F is a measure of the lack of orthogonality between the spectrum and the spectrum
linearly displaced in frequency. Its reciprocal, 1/F, is a measure of the extent to which
|f(t)|* is spread out in time,

The product of the structural time constants T and F is

TF = f Mr)l’drf IG(¢)| % dg . (B-77)

Changing the order of integration and combining the squared terms gives:

TF = f I [Ty G(#)|2 dr d¢b . (B-78)
However, we have found that
(T, $) = Y1) G(P) (B-79)

if f(t) is unmodulated. Substituting (B-79) into (B-78),

B = j j iwer )| ? dr de (B-80)

which, from (A-84) and (A-85), equals unity,
TF = 1. (B-81)
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In general, the product TF is not invariant for all waveforms since (B-18) is its general
definition, and not (B-80). The latter is a special case. If the waveform is linearly frequency
modulated, then

WT,d) > () G() - (B-82)

Therefore, for the case of linear FM
TF << J J [, )| 2 dr do (B-83)
TF << 1. (B-84)

The product TF is a measure of the lack of orthogonality between the waveform and the same
waveform displaced both in time and frequency. However, it is not an invariant measure as
that fcrmulated in (A-84) since it is usually dependent on the details of the waveform.
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C. EXAMPLES OF DESCRIPTIONS

Previous sections were concerned with. methods of analysis available for representing
functions, and the effect and importance of hounds on the representations. Bounds may be
deterministic or statistical, or both — as they are for most problems in signal processing and
their descriptions including the influence of bounds often constitutes the primary and the most
difficult objective. The selection of a suitable representation for a signal may be made by
considering the property to be characterized, and the use which is to be made of the repre-
sentation. The fundamental concepts will be brought out by illustrations of deterministic,
statistical, correlation and spectrai descriptions of a few bounded and unbounded waveforms.
Specifically, bounded and unbounded periodic waves and stationary random waveforms.

An infinite sine wave, Figure C-1(a), may be completely represented in the frequency
domain as the sum of impulses at the positive and negative fundamental frequency, each con-
taining half the power per period. Its autocorrelation function is periodic with the frequency of
the sine wave and deletes all phase information, that is, if

x(t) = A sin (@t + ¢) (C-1)
then

(1) = A; cos W T. (C-2)

If the sine wave is bounded (Figure C-1(b)), consisting of a finite number of periods, the
power is redistributed into major lobes at the fundamental frequencies and sidelobes. As the
number of periods increases, the magnitude of the major lobes increases correspondingly and
in the limit to an infinitely extended waveform, the Fourier spectrum will tend to become
impulses. The autocorrelation function of the sine wave given by (C-1) bounded to [t| < T may
be expressed as

for |7| < T

in 2w T
Yy(r) = A2T cos w,T [l - &]

20, T
= 0 for || > T. (C-3)

This has the dimensions ¢f cnergy while (C-2) has the dimensions of power. This is attributed
to the unbounded waveform being '"power bounded'' whereas the bounded waveform is "energy
bounded."

Although a unit impulse function (Figure C-1(c)) may appear to be bounded in time, it con-
tains an infinite amount of energy, thereby implying an unbounded state. Its energy is propor-
tional to the bandwidth and is therefore concentrated at the extremely high frequencies. The
Fourier spectrum of the unit impulse has unit amplitude and zero phase for all frequencies.
All the frequency components are in phase at t = T, which accounts for the height of the
impulse at the specific instant of time.

If the unit impulse is repeated indefinitely at regular intervals (Figure C-1(d)), a train of
impulses results having Fourier spectra also consisting of a train of impulses. Its autocor-
relation function and power spectrum will be similar in form. The resultant waveform is now
bounded in power.

The step function (Figure C-1(e)) is discontinuous at t = 0 and needs two specifications,
for t >0 and t <0, to describe it in the time domain. The advantage of representing it in the
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frequency domain is that it has a continuous spectrum and hence, needs only a single specifica-
tion for representation. Because of the concentration of high amplitude at the low end of the
spectrum, low- and high-frequency effects are more equally depicted than for the unit impulse.
This is a type of smoothing since the unit step is the integral of the unit impulse.

A pulse (Figure C-1(f)) has a sin x-over-x Fourier spectrum, which is the form of the
response of a linear low-pass network to an impulse function. It can be considered to be a
bounded step function, causing sidelobes to develop in the Fourier spectrum as they did for a
bounded sine wave. The autocorrelation function is triangular having a width equal to the
duration of the pulse and a continuous power spectrum having the form sin? x-over-x2, infinite
in extent.

If pulzes are repeated at regular intervals T (Figure C-1{g)) the autocorrelation function
will also be periodic with period T. For a pulse height E and duration d, the autocorrelation
function is given by

wry = Ea- Ir+ath (C-4)

where |7 + nT| < d. The power spectrum is now discrete having components at integral values
of 1/T and a sin? x-over-x2 envelope. )

A wide Gaussian pulse (Figure C-1(h)) has a low-pass Gaussian Fourier spectrum. This
illustrates the property of reciprocal spreading between conjugate Fourier descriptions. The
power spectrum is also Gaussian and low-pass, and is of considerable importance because it
simulates the gradual cutoff which is more representative of actual networks than abrupt tran-
sitions of idealized filters. A computational advantage of the Gaussian power spectrum is that
its Fourier transform, the autocorrelation function, is also Gaussian.

A train of real positive Gaussian pulses is shown by Figure C-1(i), varying in amplitude
according to a wider Gaussian envelope. Assuming that the pulses do not overlap and that a
large number of them have comparable amplitudes, the forms of the Fourier conjugate descrip-
tions are the same differing only in their parameters. If (At), and (Aw), are the time and
frequency "‘widths" of the envelope, respectively, using the definition of duration given in
(B-66), the time-bandwidth product for the envelope is

@), (Ba), > 3 (C-5)

in accordance with (B-69). For a pulse time duration of (at), and bandwidth (Aw)_, the inter-
relationship between Gaussian pulse and envelope may be partly expressed by the following:

(8t), (Ba), = (Bt), (B, = % (C-6)
The modulation has produced a lower limit for the time-bandwidth product measure of inter-
dependency.

In general, the power spectrum, like the autocorrelation function, represents second-order
statistics and does not give a complete description of the process. However, if the process has
a Gaussian probability function, as in Figure C-1(j), statistics of all orders may be expressed
in terms of the second order only. The autocorrelation function and power spectrum would
then represent complete descriptions.

A deviation from the conventional indeterminate relationship between time duration and
bandwidth is best depicted by the joint autocorrelation function, It is shown in Figure C-2 for
the train of Gaussian pulses discussed above. The joint correlation function is made up of a
lattice of elliptical Gaussian peaks having amplitudes which vary according to a Gaussian
envelope indicated by the dotted contour. If T, is the period of the pulses, the structural time
constant (T) is
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Figure C-2 - Squared envelope of joint autocorrelaticn
function of a train of Gaussian pulses varyingin ampli-
tude according to a wider Gaussian pulse

(at), (&¢)
= 2 ____;l__ i -} (C-7) S STATISTICAL ANALYSIS
° FURCTION PROSASILITY DENSITY CHARACTER(STIC
FUNCTION RUNCTION

and the frequency constant (F) is *

F = 2T, (&f), (Af),. (C-8) SINE WAYE

Using (C-6), the product of T and F is found to

equal unity,
TF = 1. 3
(C 9) TRAIN OF
PULSES

This is attributed to the separability of the
joint autocorrelation function of Figure Cc-2.

Statistical descriptions exist for the wave-
forms above but they do not simplify the repre- STATIONARY
sentations. Figure C-3 shows the probability ey ey
density function and characteristic function 0 5

for an infinite sine wave,a train of pulses,and
a stationary Gaussian process. The density
function for the sine wave (C-1) was obtained Figure C-3 - Stati_tical analysis
for t fixed, the random variable 6 uniformly 8 for several waveforms y
distributed from -» to =, and is given as

1
(A2 - x?)

=0 for |x| > A (C-10)

for |x| <A

P(x) 172

For the train of pulses, there are only two values equally probable, x = 0 and x = 1, so that
the density function is concentrated at these points in the form of impulses, each of area 1/2,
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p(x) = % 3(x) + %S(x--l). (C-11)

ian waveform is clearly Gaussian and possesses the

The density function for a stationary Gauss
the waveiforms illustrated, correlation and spectral

properties peculiar to such functions. For
analysis may be adequate.




D. ADDITIONAL DESCRIPTIONS
1. INTRODUCTION

The imposition of bounds onfunctions has led to the concept of sampling which permitted
specifying the functions by discrete values, The discrete values need not necessarily be values
of the function. They can be values of other significant parameters such as derivatives of
various orders or integrals. Too, the samples need not be uniformly distributed. However,
their use would require knowledge not only of magnitudes but also of the time instants at which
they were obtained.

2. DERIVATIVE SAMPLING

One extension of the sampiing theorem permits the determining of the periodic sampling
interval when the instantaneous sampling includes the amplitude and derivative values.

When the first derivative alone is added to the function amplitude sample, the sampling
interval is T, = 1/W, which is twice the interval required when only amplitude samples are
made. Addition of each succeeding derivative allows the time interval between samples to
become larger according to T, = (K+1)/2¥ where K is the order of the highest derivative when
all lower ordered derivatives are observed in each sample.

The sampling theorem may be stated as follows: if a functicn f(t) contains no frequency
higher than W cps, it is determined by giving M function derivate values at each of a series of
points extending throughout the time domain, The sampling interval T, = M/2¥ is then the
interval between instantaneous observations. The recovery formula when the derivative values
are included becomes increasingly complex. For the case when only the function and its first
derivative are considered, the equation becomes:

[ . - 2
f(ty = Z [vm + (¢ - nWy £1(a/m)) [%!%] (D-1)

ns-®
The composing function and its transforin is illustrated in Figure B-1(d).

It should be pointed out that this does not conflict with the previous statement that 2WT
sample values are required to specify a function of duration T and bandwidth W. Actually, it
indicates another method by which 2¥T independent samples may be obtained.

Consider the case where N equals N/2 amplitudes and N/2 first derivatives of the signal,
A Fourier analysis will then yield the amplitudes of N/4 sine terms and N/4 cosine terms so
that all harmonics up to the (N/4)th will be known. In order for a channel to pass all har-
monics up to (N/4T), its bandwidth (BW)' must be at least

.+ N E
(COMEEP - (D-2)

Since it is assumed the N symbols still contain the same information as when N represented
amplitude values,
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N = 4T (BW)' = 2WT (D-3)

(BW)' = % . (D-4)
The Shannon sampling interval, T,, is then equal to

= 1 - = %—. (D-s)

* 7 BwW)’

The same reasoning is valid when the N symbols are comprised of

N/3 amplitudes = n/6 sine terms plus n/6 cosine terms
+

N/3 first derivatives
+

N/3 second derivatives

The effective bandwidth (BW) * is given as

(BW)*. = sﬁf (D-6)
N = 6T(BW)”" = 2T (D-7)
(BWy* = ;. (D-8)

Hence, when the second derivatives of the function are considered, the sampling interval may
be expressed as

2w

; T, = 2(3;)' = %, {D-9)
{ These results are tabulated below:
[ K = Order of derivative | 0 l 1 | 2
Sampling interval l 1/2W | 2/2wW | ym
i and leads inductively to the following formula:
Sampling Interval = Et1 {D-10)

3. NONUNIFORM SAMPLING

| NONUNIFORM AMFLITUDE SAMPLING

It was mentioned earlier that a number of approximations can be used to represent a given
function. One type of approximation is the Lagrangian interpolation polynomial whose values
coincide with those of the given function at a specified number of points. Any polynomial of the
nth dagree is exactly specified by n + 1 points and has n zeros (including multiplicity of
zeros). The Lagrangian polynomial has the form

£0t) = fLA() + FLT () + o+ £ LT (1) (D-11)

where L;'(t)is the Lagrangian coeificient defined by
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L7ty = (b=t )(t=ty) -° (t‘*'tj-l)(t'tj«u) cer (t-ty) {D-12)
i (6= €t =) o (=t 1)ty =t;,) o0 (tj=ty) )
This has the property:
0, i%i
L';(tl) - (D-13)
1, i=j

coefficient of unity. Thus, it can be seen that the entire polynomial will agree with the sample
data at each of the sample points. This interpolation polynomial which yields f, at t =t for

so that each sample point in time will correspo‘itd to only one term in (D-11) which will have a
0 < j < n can be put in the form of (D-11).

If g (t) is defined as

wor = L 6-8) ©-10
then the Lagrangian coefficient can be expressed as

t
Ley = ——= (D-15)
(t=t) go(ty)

Making the Lagrangian interpolation polynomial more inclusive, (D-11) becomes

f(t,)

fn(t) = gn(t) b ('t__ t_"l_n) gn(tl;y (D-16)
=/, () L), (D-17)

|
This is quite similar to the reconstruction formula when employing uniform sampling, i.e.,

|
f(t) = Z “t“ﬂ‘ $a(t) (D-18)
m \

Therefore, (D-17) can be considered to be the form of a general sampling theorem for arbi-
trary sampling instants t, which reduces to (D-19) as a special case for t, = n/2W. Con-
sequently, for systems dealing with discrete si 1s occurring at irregular intervals, one may
employ a nonuniform amplitude sampling wher the sampling function is expressed in terms of
the Lagrange interpolation functions. Althcugh the instants of sampling t, are arbitrary, the
average spacing between successive instants ig 1/2W. In all sampling schemes the average
rate of sampling cannot be less than 2% per second (the Nyquist rate).

Figure D-1 illustrates six methods of sampling over a finite time interval having a dura-
tion T. The first (a) is uniform amplitude sampling and the remaining five (b-f) depict deriva-
tive sampling of increasing order (assuming that the derivatives exist at the point of evalua-
tion). It is seen that for the size of the sampling interval (1/2W) chosen, sampling processes
(a), (), (c), (f), are uniform, where only the value of the amplitude or derivatives of the sam-
ples need be known. In prccess (d) four evaluzgtions at t, are made. To comgpiete thenecessary
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amount of data we can sample at 1/2W for the remainder of the interval and obtain the sample
values (amplitude) received in process (a) at instants t; and ts or sample at 1/¥ and obtain
the two sample valaes (amplitude and first derivative) received in process (b) at instant tg.
No matter which sampling technique is used to complete the evaluatiou of the function in the
interval, because more than one technique was used for a complete analysis resulting in non-
uniform sampling intervals, it is necessary to have a knowledge of not only the magnitude of
the 29T sample points, but also the instants at which they were taken. Then, and only then,
can the signal be recovered. A similar analysis can be applied to process (e).

Reference (D-3) indicates that the interpolation functions, L (t), are bandlimited as long
as the number of nonuniform intervals are finite, and derives four generalized theorems for
describing the nonuniform sampling of bandlimited signals.

Thorem I: Migration of a Finite Number of Uniform Sample Points (See Figure D-2)

If a finite number of uniform sample points in a uniform distribution are migrated to new
distinct positions t = t_ thus forming a new distribution denoted by t = 7, the bandlimited
signal f(t) will be uniquely defined. When N uniform sample points located at t = n /2W,
where r withp=1,2,...N are N distinct integers, are migrated to N new positions t = t_,
2Wt, is not an integer.

ue Bt 1 o 3 a &
L] ™ 1 W "™
t 3 = IN
Py LF] tl, oW » + "o
T_2 'T_l fo "1'1 'Tz t= T

Figure D-2 - Sample point distribution for Theorem I

Theorem II: Sampling with a Single Gap in an Otherwise Uniform Distribution
(See Figure D-3)

When the number of shifted uniform sample points increase without bound, Theorem I is
no longer valid and the reconstruction function will generally become extremely complicated.
A special case which is simpler in analysis is if half of the uniform sample points, say all
those with t > 0, are shifted by an equal amount with respect to the rest. All sample peints
may then be denoted by 7, with v, = At + p/2W wherep = 0,1, .... For sucha distribution, if
the gap At is positive and less than 1/2W the signal is uniquely specified.

This theorem illustrates the effect that a particular determination of the sample points of
a signal has upon the reconstructicn. When 0 < At < 1/2W, the signal can be uniquely recon-
structed. It should be noted that when the number of samples are finite and equal to 2¥T the
reconstruction series will reduce to one having a sine-over-gine composing function. If
1/2% < At < 2/2¥, then the signal will be determined except for one arbitrary consgtant; this
process is known as underspecification. If ~1/2W < At < 0, then the sample values cannot be
arbitrarily assigned but must satisfy a consistency condition; this is known as overspecification.

Theorem II: Recurrent Nonuniform Sampling (See Figure D-4)

If the sample points are divided into groups of N points each, having a recurrent period of
N/2¥ seconds, in one period the points may be denoted by t,, p = 1. 2, ...N. For such a
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Figure D-3 - Sample point distribution for Theorem II

distribution, a bandlimited signal is uniquely determined by its values at a set of recurrent

sample points ¢ = 7 = t, + oN/2W, p =1, 2,...,N; m= ..., ~1,0,1,... (m denotes group
designation).
-3 €t 1
ty W 1 %2 L ¢ +_g_
-3 g 37 oW
_3 L AT ty oo
t 2w 17 2% a
L t2+?"*
T4-1T2-1 T3-1 T10T20 "0 T11 T2z Tas t= 7o

Figure D-4 - Sample point distribution for Theorem II

Theorem IV: "Minimum-Energy" Signals

A time-limited (T) signal of finite bandwidth (¥) may be specified by 2¥T equally spaced
samples or by 2WT arbitrarily distributed samples using Theorem I. If we do not wish to
specify the time interval, 2WT arbitrarily distributed samples can be used to uniquely define a
"minimum-energy’ signal, that is, a signal f(t) with no frequency component above W cps
whose energy

£(¢)2 at

is a minimum. The time interval inferred is that corresponding to the passage of this minimum
energy. When the sample points are taken from a uniform distribution, the time-limited and
minimum energy signals become identical.

From the reconstruction functions for *he theorems given above, formulated in Table D-1,
it is e~en that for a nonuniform distribution composing functions for different sample points do
not have the same form. Also, as the sampie point deviates more and more from the uniform
one, the composing functions become increasingly complicated. For a uniform distribution the
maximum value of a composing function for a particular sample point occurs at the sample
point and is unity. In a nonuniform distribution, the value of the composing function at its




67

I_cg. - .&nhu
Co-Ymuz upe

PLELLY TY R S

$10 S1UNIB |0 SLoyr BUO 4O X1iitw 08JIAUL oy} 4o ssoyy oue Py sjue a1 000 ey

2 d
' (s _,N = (W
[]

81 (suB|S sy} 4O $|SRI0; UO|IOSIAEUOORS By ‘EAE|UIE S 8|

nLT

M -n-Louew

L] ] V0|398J38U000s BY]
e e e gt = g+ .o
o3| Ag pourmiezep A|oshjus 5| |8

gty za oS
V0240004 & He|ASY ‘4O8e 83|04 it ;O sd80.B O)8| POR|A|P SJe SIU|OF o dues o) 4|

*(votysulljsep droslt sajousp ®) “*°¢|
=3 S3Ul0d o|Cews 301004 40 304 @ 38
1 1-§IP|RPURY & “UO|3NQJI3®|P S ¥I8S JOi

>

[
Cr-amsz P <
Framaz v N = 0re w00 k
] 1sul|s oG} 4o ,Kiiswe,
)% (“a)s w = () 843 & eAOGe usuoswcd »uoonot u”c“a_n‘ﬂawnsﬂ..nua ".Jo:!o...“ u;. 'H -nﬂem»“vn-h
SIUI06 8 [dues PUIARIIIEIP K| ]404314de jo J0d BY(UL4 @ sen|sa sidews oy} 41 SIVNRIS 2SN -MANLNING M)
.
[ Y 0 ey, “..U. 24 woew
. LI L AT W™ s T T = om
wil+) = v e

{v-c MNBIJ 336) BNITNTS
MO 1 HANCK LIGHNROIN 1L

4356301 eAj31%0d ¢ 3) ® a0y

nZ/(1+m) > 39 > Kz/n
INOILYI 4 19345030M0

MZ/M > 7 > KZ/(1-0)

o (2 - WAz +ed
[

L
1

I (ERA L ANNELS)

(1" (2} u”.N... = (s

ORNIe) WO[IIRITeuedes Sy “Jeelu| Se J0u 8|

: = (1%
NOLLYI1419348N3M0 (¢ +waz)g (1) +) wei08uL JO 10N} 4O Wio) 4} SASY [ (A W|WWIO}
UO|308I38U000S S4L ‘PR {deds K|eshjur (oul|s M) AZ/1 veyy SS8| pue S|} 804 8] (s-¢
e 7k oy 41 ‘woiimaissp 8 08 ey +Ig =L a0 nz/e~="2]  3umeld 338) moLLAMIMLEIO
s F Win % fq poiouep 08 vy Aow 510(08 B1aes |10 “30s 0} 8} Jo0Esel i|n Jencw (enbe 041N 35 LAE3NLO WY W)
- % A4 P01 010 0 < WIN 030N} (18 Kos ‘536104 016 wici 188 84} 4O 4iY 41 VO TINIS ¥ MLIA ONITANS “1L
485061 us Jou o1 Yaz wasun 4 = %4 Lo,
o
b, B tob Ry "
e (1T () ) e ) .
W ug s | .A._ ] _ L ) NS R
W2 uis = ()% |GII~P«.F R S B TR (%% Cehs on
! - LTS woagus (14) = P A. vu.- {
I Ty =BV vy
ﬁm-..vr G-nw ._v_. d
‘ ’ " 13

(2-a anns13d 338)
S1HI04 3TMS O INA 0
NIENON ILINL ¥ 0 NOLLYUDIN )

oo

M9 (s N = (3)3 NOILONAZ NO1LONYISNOOIY

K3YOIHL ONI'dNYS

ONITANYS WO | NANON

SPOyIop Gu) |dweg wioy |unuoy
1-0 8yl




68

particular sample pnint remains unity, although this may not pe its maximum value. AS
gsample points are bunched closer together, the maxiinum value of composing functions of
sample points close to the gap produced by the bunching will tend to become larger. This can

pe seen in Figure D-5 which depicts a composing function for the sample point distribution
corresponding to Theorem I

Volt)
NONUN | FORM SAMPLING

(Theorem 1)

+

£ Fa il

v 1V t

-

NOTE DIFFERENCE IN SCALES

Figure D-5 - A composing function for the sample point distribution 7 _ obtained
= +2/2W and t = $3/2Wto t = +1/4W

fromthe migration of uniform sample points t
and t = +3/8W

gether, the main information is contained

in the values of the signal and its derivative near the two sample points. Since the maximum
values of the derivative is needed, this implies that a greater accuracy is needed in determin-

ing the sample values for an accurate reconstruction of the function. Consequently, for physi-
cal systems with limited dynamic range, the total number of distinguishable signals in an
observation process employing nonuniform sampling may decrease even though the degrees-

of-freedom are preserved.

When two adjacent sample points are bunched to
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In view of what has been said, a generzl sampling theorem may now be given as follows:

K a signal is a magnitude-time function, and if time is divided into equal inlervals of T
seconds where T = N/2W, and if N instantaneous samples are taken from each interval in any
manner, then a knowledge of the instant at which the sample is taken determines the original
signal uniquely.

A sampled wave can be represented by any set of 2WT independent numbers associated with
the function, and these represent the least number of values capable of completely and uniquely
defining the function. This includes derivatives and integrals. The total number necessary
per period is fixed and need not be equally spaced. If the independent numbers are bunched to
a substantial extent, the values must be known with extraordinary precision to afford accurate
reconstruction of the function.

SAMPLING THE ZEROS OF BANDLIMITED SIGNALS

One form of nonuniform sampling is the sampling of the zeros of bandlimited signals. In
this method, the sampling points are determined by the characteristics of the signal containing
the message. Information is transmitted over ¢ channel by preserving the occurrence of zero
crossings rather than denoting amplitudes or slopes at specified instants.

In general, the average rate of zero crossings of a bandlimited signal is less than the
Nyquist rate. However, the use of high-order derivatives of the signal will result in a wave-
form whose zeros approach the Nyquist rate though they will be very closely corre.ated and
will no longer represent independent samples. A continuous bandlimited function will include
"complex conjugate'’ zeros which, unlike real zeros, are not physically detectable, and will
tend to cluster along the real axis.

The above considerations leads to the following formula which gives the synthesis of a

bandlimited function with a given set of real and complex zeros within an interval, assuming
real zeros at the Nyquist rate outside the interval:

_ _q\P sin 7 (2Wt - n) (D-20)
S = Z;( D A, w (20t - n)
where:
1
]-7 -27.,. IJ (2WZ - n)
An = f(o) N 1 2 N (D—21)
I - 4 I (m -~ n)
nml mm-N
ngn
Z, = complex zeros = t_ + jug
N = integer not exceeding WIT (N < WT).

This can be seen tc be very similar to the uniform sampling iormula for a bandlimited function.

The amplitudes at the sampling points (A,,) can be expressed in terms of the migrations of
the zeros from the uniform sample point locations. The results show that the location of a zero
(or migration from a sample point location) affects the amplitude of the signal in its immediate
vicinity but does not have a marked effect on the signal at a much earlier or later time. A
large migration, resulting in a large interval between successive zeros, will produce a large
signal amplitude.

A binary signal, such as infinitely clipped speech, can be replaced by a bandlimited signal
having the same zero crossings. If the complex zercs are included, the bandwidth is increased
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and the signal amplitude reduced from that which would have resulted from the real zeros.
This illustrates how bandwidth may be exchanged for signal-to-noise ratio when information
is transmitted. An illustration of the theory given is shown in Figure D-6. .

|

SINARY SIGNAL L n_r =
o TIE) T ) | ) 10 PR o
—w| SPECIFIED |__
| INTERVAL T
RELATIVE
AMPLITUDE

Figure D-6 - Bandlimited signal having
specified zero crossings

The abrupt crossings of a binary signal can be transmitted over a channel by converting
the migration intervals to pulse amplitudes occurring at uniform intervals 1/2% with the indi-
vidual amplitudes proportional to the corresponding migration. This would give 2W average
numbers of crossings per second with the minimum theoretical transmission bandwidth remain-
ing at W, It should be emphasized that the information that zan be recovered is dependent upon
the dynamic range of the system which, as previously mentioned, is proportional to the distri-
bution of the intervals between crossings. These principles are illustrated in Figure D-7.

L |
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Figure D-7 - Conversion of the migration of zero crossings of
a discrete signal to pulse amplitude at uniform intervals
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4. AMPLITUDE QUANTIZATION

A continuous signal with a finite amplitude range will have an infinite number of amplitude
levels. It is not possible or necessary to transmit the exact amplitudes of the sampies. Con-
sider the sample in Figure D-8. A signal may be transmitted with a finite number of discrete
amplitudes if all samples such as OM can be considered equal when M lies within the amplitude
range q. It is then permissible to represent and transmit all amplitude levels within this
range by one discrete amplitude ON. The signal recovered will be different from the original
but since the maximum erior cannot exceed one-half step, the deviation from fidelity can be
reduced by increasing the number of quantum states or amplitude levels, keeping the total
amplitude range constant.

Figure D-8 - A quantized sample

Representing the signal by certain discrete allowable levels only is called quantizing., It
inkerently introduces an initial error in the amplitude of the samples, giving rise to quantiza-
tion noise. This is the difference in signal power before and after quantizing. Quantization is
a nonlinear operation which occurs whenever a continuous physical process is represented
numerically. Use of quantization within a system may complicate analysis. However, there
are methods which may reduce the complexity for some applications.

A quantizer is a device which processes continuous data or sampled data. It has the
property that an input lying somewhere within a quantization "box" of width q will yield an
output corresponding to the center of that box. The input-output characteristic of a quantizer
is illustrated in Figure D-9, The probability density of the output, p’(x), will consist of a
series of impulses that are uniformly spaced along the amplitude axis. Each impulse will be
centered in a quantization box and have a magnitude equal to the area under the probability
density p(x) within the bounds of the box. The quantizer output distribution p’'(x) consists of
"area samples” of the input density p(x) and the quantizer may consequently be thought of as
an area sampler. Therefore, amplitude quantization may be considered to be a sampling of the
probability density of the functions in question.

U ouTPUT

1WPUT

"l -

TNPUT (] 9 e OUTPUT — r
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§
THE QUANTIZER ‘__r_

INPYT-0UTPUT CHARACTERISTICS

Figure D-9 - The quantizer and its input-output characteristics
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The probability density of Juantization noise Q, is independent of the probability density
of the input to the quantizer as long as the Shannon criterion is satisfied. This implies that
when the radian "fineness' ¢ = 2n/q is twice the radian. '"frequency"” of the highest "frequency’
component contained in p(x), p(x) can be completely recovered from the quantized density
p'(x). The distribution of noise introduced by the quantizer will then be flat-topped having a
sin x-over-x characteristic function.

Quantization can be considered as a sampling process that acts not upon the function itself
but upon its probability density. As in conventional sampling, where the Shannon criterion
allows a function to be recovered, a sampling theorem for quantization exists such that if the
quantization is sufficiently fine, the statistics are recoverable.
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E. DESCRIFTIONS OF SPATIAL STRUCTURE

1. INTRODUCTION

Previous sections have discussed the representation of functions where time was implic-
itly or explicitly indicated as the independent variable. A number of descriptions and rela-
tionships were outlined. Their use was indicated to be jointly dependent on the type of function,
and on the use which was to be made of the descriptions. Conditions under which deterministic
and statistical analyses were preferred or permissible were given. The existence of bounda-
ries in time, or in the conjugate domain, frequency, was seen to play an important part in
determining the type of description which could be used for a particular problem. Bounds
imposed jointly on the conjugate domains involved other important classes of descriptions.
Additicnal representatives were discussed which were useful when a multiplicity of functions
were involved.

Many of these descriptions and the problems associated with their selection and use also
occur in spatial probiems — that is, where the independent variables are spatial. It is not
intended to develop the correspondence of spatial descriptions completely — and only a few
elementary aspects will be reviewed in this section. Other relationships will be deveioped in
later sections. Although the exact details of these relationships are of importance, of com-
parable significance is the understanding of the basic philosophy associated with concepts such
as the transformation of spatial variables, and spatial sampling.

Just as time and frequency were seen to provide equally useful methods for description,
both space and space frequency are employed in representing spatial structure. A spatial
distribution may be expressed mathematically as a function of intensity and of linear position
along a line or in a plane. It may also be expressed mathematically as a function of inverse
space, that is, in terms of spatial frequencies. The relative utility of the two domains is based
on essentially the same factors which make Fourier transformation of value for temporal
functions. That is, it may often be of value in order to improve visualization, or to facilitate
computation or measurement to work in the space-frequency domain rather than directly in the
space domain. Similarly, correlation analyses and sampling methods may be applied to sim-
plify representations of spatial structural detail.

2. FOURIER ANALYSIS

AMPLITUDE DISTRIBUTION; RADIATION PATTERN

A viell-known example of the application of Fourier analysis to spatial problems involves
the relationship between the amplitude distribution along an aperture and the angular distribu-
tion of energy. For antennas, the distribution along the aperture is given by the component of
the excitation tangential to the aperture plane that produces or maintains 2 radiation field at an
arbitrary point in space. Any amplitude or aperture distribution F(x) may be represented by
the following expression:

F(x) = A cos 8 e"“‘ in Ox

(E-1)
This represents waves traveling over the aperture and having different propagation coefficients
along the x-axis. The equation above represents a wave with a propagation coefficient k sin @
which produces in the medium (propagation coefficient k) a plane wave in a direction making an
angle ¢ with the normal to the aperture plane, A is a complex number whose modulus and
argument determine the amplitude and phase of the plane wave at the aperture, and k
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represents the increase of phase difference per unit distance in the direction of propagation.
Each wave of the Fourier decomposition has its own amplitude and phzse, which in general
vary with ¢, forming an angular spectrum of plane waves.

The concept of a polar diagram implies an aperture of finite dimensions and the evaluation
of the field at a point whose distance from the aperture is large compared to the extent of the
aperture and the wavelength. Under these conditions the angular specirum is called a polar
diagram. It is important to note that the angular spectrum associated with an aperture distri-
bution gives the polar diagram if this concept is applicable but retains a useful meaning even
when it is not possible to use a polar diagram as a method of representation.

For an aperture of width "a' having a real or complex amplitude distribution F(x), the
radiation pattern G(s) is given by

a/2 2 x sin @
G(s) = (1 + cos 6) f F(x) e A oax (E-2)
-a/2
where
6 = the polar angle measured from the normal to the aperture
x = the distance along a plane parallel to the aperture
» = the wave length
s = - sin 6/A.

It is assumed that the phase velocity at the aperture is equal to the velocity of propagation.
If the beam is sufficiently narrow, the slowly varying factor 1 + cos 6 can be omitted and dif-
fractivn theory used to predict the radiation pattern that will be obtained with a given aperture
excitation and aperture width. Fourier analysis of the aperture distribution gives the position
and strength of the component beams. The line spectrum is an angular one, sin 6/A replacing
the frequency variable of ordinary harmonic analysis. The lines represent plane waves which
would be produced if the distribution of the field over the aperture plane was periodic extending
to infinity. When the distribution is confined to a single period the effect is approximately that
of forcing plane waves through a finite aperture. The angular spectrum then becomes con-
tinuous, and each plane wave is replaced by a diffraction pattern in the form of a main beam
and sidelobes. Thus, a Fourier series representation of the field is transformed into a Fourier
integral, the aperture distribution and radiation pattern together comprising a pair of Fourier
transforms. If the aperture is fed in-phase, a one-dimensional aperture distribution (or ampli-
tude distribution) and radiation pattern (or angular spectrum) may be represented as:

(E-3)

G(s) f F(x) e %% 4y (radiation pattern)

F(x) .“ G(s) el?mxs 4 (aperture distribution). (E-4)

If the amplitude distribution is symmetrical about the center of the aperture, F(x) is even
and the pattern is given by the Fourier cosine transform of F(x), designated as G.(s), then (E-3)
and (E-4) becomes

F(x) cos (2mxs) dx (E-5)

Ge(s)

(E-6)

F(x) j G (s) cos (2mxs) ds.
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If F(x) is odd, the excitation of one haif is of opposite sign to that of the other half, and the
radiation pattern will be given by the Fourier sine transform of F(x), i.e., G (s):

G,(s) = j F(x) sin (2mxs) dx (E-7)

F(x)

J’ G, (s) sin (27xs) ds . (E-8)

Fourier sine and cosine transform pairs are illustrated in Figures E-1, E-2, and E-3 for
several types of amplitude distributions. The antiphased apertures are used in '"Monopulse"
application as will be indicated in later sections.

A given radiation pattern may be resolved into the sum of two or more radiation patterns,
each supplying its own aperture distribution. The resulting aperture distribution wili then be
the vector sum of the component distributions. An elementary and useful pattern is the
"sin x-over-x" pattern which results from a constant amplitude, in-phase distribution across
the aperture. This is shown in Figure E-1. The zeros are equally spaced, except for those on
either side of the main beam, which occupies two "spaces." The width of cne ''space' is the
reciprocal of the aperture width, since the beamwidth is inversely proportional to the width of
the aperture.

Two other properties of the Fourier transform which are of importance in antenna
problems:

(1) Delay Linear Added Phase

F(x-a) ———— G(s)e~ j2zas
Similar to the Fourier property in the time-frequency domain, a translation in the aperture
distribution z2ffects only the phase of the radiation pattern.

(2) Complex Modulation Shift of Spectrum
F(x)el2ryx ———————— G(s-7).

Multiplying an aperture distribution by exponent (j27yx) "delays" or displaces the radia-
tion pattern by an amount 6, where y = - sin §,/A. This results in having the axis of the major
lobe of the radiation pattern at an angle of 6, with respect to the normal to the aperture. If the
tota! phase variation across the aperture amounts to 2n7, n being an integer, the pattern is
displaced n spaces.

Any number of main beams of the "sin x-over-x" patterns, if each is separated from the
others by a whole number of spaces, may be summed without interferring with each other in
their principal direction of radiation. Hence, all zeros may be made to disappear by placing
beams adjacent to each other at intervals of one space. Therefore, for an aperture of n wave-
lengths, a polar diagram may be constructed so as to have any chosen value in each of 2n + 1
differep* directions (equally spaced) in front of the aperture.

APERTURE - BEAMWIDTH PRODUCT

A relationship between the aperture distribution width and the width of the angular spec-
trum of the radiation field is,

As x Da = 1 (E-9)

where As = the equivalent angular spectrum width
La = the equivalent aperture distribution width,
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Figure E-2 - Fourier sine transforms
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This is valid provided that G2¢0) #* 0, where G(0) = G(s)|,., and is the angilar spectrum of
plane waves radiated from the aperture at broadside.

Thus, an aperture-beamwidth reciprocal relationship exists for a spatial distribution,
analogous to that for the time-frequency domain. It has been previously shown that the radia-

tion pattern due to a constant, in-phage, amplitude (unity) distribution over an aperture of
width rar is

G(s) = a sin 7as (E-10)

7as

Comparing this with the spectral envelope of a rectangular pulse of unit amplitude and pulse
width T, namely,

G(fy = T sx_n;;ﬂ (E-11)
v

shows that the aperture width "a" corresponds to the pulse width T and the direction parameter
s corresponds to frequency f. To complete the analogy, replace the time variable t applying
to the pulse by the distance x along the aperture. If the Fourier transform relationships
between waveform and spectrum in the time domain are:

G(f) = [ F(t) exp (-j27ft) dt (frequency spectrum) (E-12)
F(t) = j G(f) exp (+j2mft) df (time function) (E-13)
—m

then using the above analogies, the corresponding Fourier transforms in the spacz domain are:

(E- 14)

J. F(x) exp (-j27xs) dx (radiation pattern)

G(s)

.‘. G(s) exp (+j27xs) ds (aperture distribution). (E-15)

F(x)

which are identical to (E-3) and (E-4).

To determine the effect of varying the aperture width, consider the radiation pattern given
by (E-10). If the aperture width is increased by a factor "m", the new pattern is

G(s) = ma s»j:m.’::as . (E-].G)

Therefore, increasing the aperture m times has the following results:

1. the iield strength increases m times at broadside

2. the beamwidth of the angular spectrum is reduced by 1/m

3. the beamwidth in the polar diagram decreases but not linearly since the half-power
beamwidth depends on the arc-sine; the reduction will be linear for narrow beams where

6 =~ sin 0 (6 < 15°). The inverse will be obtained if the aperture width is decreased m times.
These results are illustrated in Figure E-4, ’
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Figure E-4 - Reciprocal relationship between aperture and beamwidth

TOTAL RADIATION FIELD

The Fourier methods discussed are rigorously applicable only In the far field, that is,
where the energy can be considered to be propagated by plane waves, Calculations of the com-
plete fleld can become extremely complex wlth exact sol ons being obtainable only for rela-
tively slmple configuratlous. The increase in the physical slze of many radar and sonar arrays
has made 1t a practical necessity to consider approximate methods of descrlbing and relating
near- and far-field radiation,

The total radlation field may be arbltrarily divlded into three "regions," the Fraunhofer
region or far field, the Fresnel region and the near field. These regions are distinguished by
the nature of the approximations made for establishing the functlonal dependence of the field
contribution of an aperture element on the separation of the element to a polnt 1n space.

The far field is a region in which power decreases inversely as the second power of the dis-
tance to the center of the aperture. The approximation made is th .he field contribution due to
an aperture element consists of a constant amplitude factor and a linear phase factor. The radia-
tion pattern in this region is then the Fourier transform of the aperture distribution as was indi-
cated earlier in the section.

Within the Fresnel region an element contrlbution may be approximated by a constant
amplitude and a linear and quadratic factor. The Fresnel region extends, with respect to the
center of the aperture, from a distance of several times its dlameter D to D¥/X, where A is the
wavelength of the propagating wave.

The near field extends from the Fresnel region to the surface of the aperture. It is char-
acterized by extreme amplitude and phase variations, and has been designated the "induction"
fleld in electromagnetics. For acoustical sources having dimensions small compared to a
wavelength the near field would extend to a dlstance of one-quarter waveleingth beyond the
source. The distance from the source at which the transition from the Fresnel to the Fraunhofer
region occurs is, of course, not sharply defined physlcally, and is dependent on the shape of the
source and the amplltude distribution. In the Fraunhofer region, the power on axis is inversely
proportional to the square of the distance, whereas in the Fresnel region, a series of maxima
and minima will be found on the axis normal to the plane of the source. More detailed discus-
sions of the significance of these regions in information processing wiil be given in later sections.
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SPATIAL SAMPLING

Sampling theorems which were previously discussed were related io Fourier analysis.
One of the theorems indicated that a function restricted to an uprer frequency of W could be
compietely described by giving its values at a series of points spaced 1/2w apart.

A version of spatial sampling may be stated in the following form:

A discrete source confined within x = X, y = ¢+ Y, is completely specified by measuring
the coherence of its field at discrete invervals at 1/2x, and 1/2Y_, where X_and Y  are the
widths of the aperture in wavelengths along planes parallel to the x and y directions respec-
tively. This results in a two-dimensional radiation pattern. (By a discrete source is meant
one having finii¢ dimensions and a finite aperture distribution.)

The above theorem gives the interval for which independent measurements are to be made.
Measurements could be made at a finer interval. However, the measurements at finer inter-
vals would be deducible from measurements at the greatest interval compatible with the
theorem, and would not be fully independent. As a result, the structural information of a field,
contributed by a source, can be thought of being spread out over the medium and having a
certain density, there being one independent datum per rectangular cell having the dimensions
given above,

The space-sampling intervals for two types of distributions are given below:
Constant distribution, in-phase

01/2 = %degrees = half-power beamwidth

6y = .8391/2 degrees = space-sampling interval.

Cosine distribution, in-phase

01,2 = ;i’/%degrees = half-power beamwidth

6, = .616,,, degrees = space-sampling interval.
Thus, it is seen that the space-sampling interval is related to the beamwidth of the radiation

pattern.

In the time-frequency relationships, it was indicated that when a sampled waveform is
passed through a low-pass filter which transmits only the spectrum of the original signal, each
individual delta-function (a sample) having an infinitely wide spectrum -vas reduced to a sin «/x
function, whose rectangular spectrum fits the filter pass band. Therefore, the original signal
is the superposition of a series of sin x/x functions spaced according to the sampling theorem
weighted by the filtered waveform. In space, a finite aperture acts like a low-pass filter and
results in a linear distortion of the radiation pattern as illustrated in Figure E-5. Eachsample
of the radiation pattern when passed through a finite aperture will result in a sin x/x shaped
beam that corresponds to a direction in the radiation field. Figure E-6 illustrates how a set of
sample beams can synthesize the radiation pattern.

AUTOCORRELATION FUNCTION

The autocorrelation function y(x) of an amplitude distribution F(x) is given as

L
Y(x') = %]‘ F(x) F(x+x') dx (E-17)
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The sidelobes of the sample beams are omitted.

where L is the length of the line. Similar to the time domain, the autocorrelation function at
the origin is the mean-square-value of the amplitude distribution. If x’ is larger than the
distance over which the value of one point in F(x) has an influence on the other, then y(x')
approaches the square of the average value of F(x). In two dimensions, autocorrelation func-
tions may be used as measures of the linear coherence of two-dimensional amplitude distribu-

tion functions and are expressed as

1

%

Wx'y') = ijF(x-y) F(x+x', y+y') dx dy
A

where A is the area of the field under consideration.

(E-18)
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Correlation analysis may be used to describe the statistical propertics of tie fluctuations
of a wave uecid. Previously it was shown that the correlation function can be used to measure
the "time constant" of a waveform. Similarly, a "correlation distance' in the space domain
may be used to describe the distance at which the statistical dependence between fluctuations
vanishes. The amplitude and phase variations in a radiation field are determined to a large
extent by the type of background ensembles existing in the field. These can bhe classified in
many ways. For example, an ensemble of backgrounds may be staticnary - the properties do
not vary with the direction of view, ergodic - the statistical properties of any background are
the same as those of any other of the ensemble, or Gaussian - the properties are analogous to
those of electrical noise generated in radiation detectors.

The spatial autocorrelation function and its Fourier transform, the power pattern, are very
useful for decribing Gaussian background ensembles and can be used to “optimize” linear
spatial systems in the least mean squares sense. For non-Gaussian ensembles, correlation
analysis cannot completely describe the field, Also, it cannot be used to analyze the perform-
ance of non-linear spatial systems. Non-Gaussianity or non-linearity infers statistical
descriptions for complete characterization.
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F. ORTHOGONALITY AND INTEGRAL TRANSFORMS
1. INTRODUCTION

The equations that describe physical phenomena ordinarily depend on both time and space
coordinates. By introducing parameters K, called "proper values' the equations may be
transformed to those depending on the space coordinates only. These values, which areusually
infinite in number, are determined from conditions which must be satisfied at certain physical
boundaries.

The particular form of these equations depends upon the system of coordinates used, and
the choice of coordinates in turn depends upon the geometry of the physical system to which the
equations apply. The particular types of functions which satisfy the equations are known by
names which refer to the particular geometry of the physical system. Examples of these are
(a) cylindrical functions, of which the Bessel functions are of the "first kind" and (b) spherical
harmonics, also known as Legendre' Polynomials,

The functions are referred to as the "proper functions' or "eigenfunctions'' pertaining to

the particular physical system under consideration, the simplest of them being the trigono-

retric functions which are the proper functions for systems having a rectangular geometry.
If a function f(x,y,z) is operated upon by a linear operator L [f(x,y, z)], such that L [f(x,y,z)]
= (constant) f(x,y,z), then the function is called an e’genfunction of the transformation, and the
constant the corresponding eigenvalue or proper value, X,. These functions, in terms of the
proper values K, form a set or system. Due to the linearity of the equations, a complete
solution may be derived by a linear superposition of a set of these proper functions with dif-
ferent parameter values and arbitrary coefficients. Thus, if ¢,(x,y,z) represents a proper
function for the parameter n, the solution f(x,y,z) will have the form

f(x,y,2) = aj¢; + azpy + azpz + *c + a, P, (F~-1)

which in general is an infinite series. The coefficients a, are regarded as constants of inte-
gration which give the solution (F-1) the necessary flexibility of meeting certain boundary con-
ditions set by the physical problem.

In one dimension, (F-1) takes the form

F) = ) ey a0 (F-2)

n=o

The problem now is to expand f(x), an arbitrary function, in a series of weighted elementary
proper functions in such a way that the resulting series converge. The solution to this problem
is usually quite complicated unless the system of proper functions or a derived system formed
from linear combinations of these functions satisfies what are known as the conditions of
orthogonality. Before these conditions are given, the origin of the word orthogonality will be
discussed.

2. CONDITIONS OF ORTHOGONALITY

The word orthogonality comes originally from vector analysis where two vectors A(x,y, z)
and B(x,y,z) are said to be orthogonal if their dot product equals zero, i.e.,

A‘B = AB . +A/B +A,B, = 0. (F-3)
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Similarly, vectors in n dimensions having components A,, B;, (i = 1,2,3, ... n) are said to be
orthogonal! when

AB, = 0. (F-4)
i=i

If a vector space has an infinite number of dimensions the components A ; and B; become con-
tinuously distributed and i is no longer a denumerable index but a continuous variable (x). If
(x) is confined to the region 0 < x < ¢, the scalar product (F-4) becomes

4
j. A(x) B(x) dx = 0. (F-5)
°

In this case the functions A(x) and B(x) are said to be orthogonal. The concept of orthogonality
is indefinite unless reference is made to specific range of integration which in the present case
is from 0 to ¢.

In general, the conditions of orthogonality for the one-dimensional case are given as

b r, for m=n
g W(x) bp(X) Bo(x) dx = (F-6)
a 0 for m ¥ n

where W(x) is a fixed function of the independent variable which is usually taken equal to unity
when representing signals, and a and b are the finite limits of the region over which the func-
tion f(x) is specified. To obtain the coefficients, multiply (F-2) by W(x) ¢,(x) and integrate
from x = a to x = b,

b @ b
I W(x) £(x) ¢p(x) dx = Z_‘ anj W(x) ¢,(x) bo(x) dx . (F-T;
L] n=0 (]

Since the ¢'s are orthogonal, from (F-6), all terms on the right of (F-7) vanish except one
so that

f W(x) f(x) ¢,(x) dx = ﬂnJ‘b W(x) [(;bm(x)]2 dx . {F-8)

Solving for a_,

b
| w0 160 g0 ax
a =2 . (F'g)

n b

j W(x) [¢m(x)]2 dx

Since an orthogonal function ¢ (x) may be muitiplied by an arbitrary constant, the quantity r_
can be made equal to unity. The resulting functions ¢,(x) are then referred to as a normalized
set, the denominator of (F-9) becomes unity and the coefficients for (F-2) are

n

b
a_ = j W(x) £(x) $.(x) dx (F-10)

which represents the desired solution to the provlem stated earlier.

e i e e
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3. INTEGRAL SQUARE ERROR

The question now arises under what circumstances it is possible to express an arbitrary
signal f(x) by an infinite sequence of orthogonal functions L E

f(x) = Z a, Pa(x) . (F—ll)

In order to use a representation such as (F-11), it is necessary to either restrict f(x) or settle
for something less than an exact identity in the representation.

A satisfactory way of specifying the near equality of f(x) and tte sum is through an integral
of the magnitude of the difference squared:

b
J: W(x)

If the a, can be so chosen that the integral (F-12) vanishes for a given function, then the repre-
sentation (F-11) is said to be complete,

N 2

f(x) - Z a, ¢ (x)] dx = e. (F-12)
N

The use of a criterion of this type to evaluate the effectiveness of a representation is
arbitrary. The odd powers cannot be used for then ¢ has no minimum and although any even
power could serve the purpose, the evaluation of the coefficients would become very com-
plicated. Too, a power law greater than the square law would tend to suppress very large
errors at the expense of smaller errors to a greater extent than the square law, The latter
treats all errors more equally and, as will soon be seen, lends itself to the concept of orthog-
onality.

To find the coefficients which minimize ¢, expand (F-12), that is,

b 2 N b N b
€ =j W(x)|f(x)| dx - 2 ); anj W(x) f(x) ¢p(x) dx + Z a anj W(x) $,(x) ¢p(x) dx. (F-13)
. - . m,na=N -

If ¢.(x) is orthogonal and normalized so that

b
[ 400 dn0 600 ax = 0 mta

. (F-14)
=z 1 m=n
then (F-13) becomes
b 2 N b N 2
€ = j W) f(x)| dx - 2 ) a, J’ W(x) £(x) ¢ (x) dx + ). a, (F-15)
a -N (1 -N
which, from (F-10), reduces to
b 2 N 2
€ = j W(x)| f(x)| dx - Z up (F-16)
(1 -N

Thus, if the ¢, are orthonormal functions the error becomes a minimum and as N becomes
infinite, (F-16) results in Parseval's theorem. In general, the theorein states that if an arbi-
trary function is expressed as an infinite weighted sum of orthogonal functions, then the
"energy" of the function is equal to the sum of the "energy' of each of the orthogonal components.
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When (F-11) is not exactly an equality, (F-16) suggests that the orthogonal function method of
finding the coefficients leads to the minimum value for the integral of the square of the dis-
crepancy.

4., INTEGRAL TRANSFORMS

If the function f(t) is defined by an ordinary or partial difference, differential, or integral
equation and certain boundary conditions, it is found simpler in certain circumstances to
translate the boundary value problem for f(t) into one for the function,

2
Ry = [ f(0) Kes,v) at (F-17)
t

1

where F(s) is called the integral transform of f(t), X(s,t) the kernel function, and s the
image variable. From (F-17), an integral transformation of a function f(t) is obtained by:

(1) Multiplying f(t) by a function of two variables.

(2) Integrating over a definite range of the original independent variable so that the
transformation is a function of the iinage variable only.

The integral transformation is orthogonal for it satisfies the conditions of orthogonality and
consequently may be evaluated by the integral-square-error criterion for completeness. It
provides a ore-to-one transformation with the function being transformed.

The kernel function determines the type of integral transformation made and the appli-
cability of the transform to particular systems. There is a great variety of functions which
may be used as kernels. Three general categories are:

(1) Product kernels — the original and image variables occur as a product st.

(2) Sum or difference kernels — the original and image variables occur as a sum or dif-
ference s t t,

(3) Types in which the original and image variables do not occur in a combination that can
be replaced by a single variable.

In a transformation, the independent physical variable (such as time t, distance x, tem-
perature T, etc.) is replaced by an abstract mathematical variable called the image variable
(usually represented as s, p, or j ») and the dependent physical variable is then replaced by
an abstract function called the transform. Physical significance has been attached to these
abstract variables, the extent of which depends on their utility.

In order to obtain the unknown function from its transform it is necessary to invert or
solve the integral equation (F-17). The general method of inversion is by an inversion integral
of the form

f(t) = j k(t,s) F(s) ds. (F-18)

1
The inversion integral must have this general form since:
1, It must contain the transform of the unknown function, F(s).

2. It must have a kernel function of s and t in order that the integral be a function of t.
3. It must have definite limits sothat it is not a function of s.
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The transform integral and the inversion integral togethev constitute an integral equation
pair.

One procedare for producing integral equation pairs is through the use of spectral theory.
The technique involved is that the funct:.a f(t) is expanded in {erms of a set of discrete func-
tio..3 k (t) that possess an orthogonality property, where n has a different integer value for
eacn member of the set. Such sets of functions are called eigenfunctions or spectral functions.
The expansion is

£t) = 0 k(t) £, (F-19)

where f_, the coefficient of k,(t) in the expansion, is the amount of each spectral function
which must be present in order that the superposition add up to the given function, i(t). The
set of coefficients f, is called the spectrum of f(t) with respect to the set of spectral func-
tions in terms of which f(t) is resolved. Since the set of spectral functions is discrete, the
spectrum is called a discrete spectrum.

When the number of terms in the spectrum required to give a good approximation of the
function being resolved is small, the summing process can be performed. However, if the
number of terms needed for a good approximation are large, it is convenient to convert the
sum to an integral. Therefore, the above becomes

f(ty = jkn(t) af | (F-20)
As the number of spectral terms required for an adeguate representation increases indefinitely
they form a denser set of spectral lines and in the 1imit become a continuous spectrum. In this
process, the discrete variable n may be replaced by a continuous variable s and the discrete
set of spectral functions k (t) may be represented as a continuous set of spectral functions
k(t,s). Therefore, (F-20) becomes:

f(t) = Ik(t.s) df,. (F-21)

But df, can be represcnted as a derivative in spectral space:

(F-22)

where df /ds is the spectral intensity or amplitude density in spectral space and is called the
continuous spectrum of f(t) with respect to the spectral or kernel function k(t,s). The spec-
tral intensity of a function is represented as F(s) s0 that (F-21) can be put in conventiornal
form as

f(t) = 5 k(t,s) F(s) ds (F-18)

which is the inversion integral.

In order to obtain an expansion of f(t) in terms of a discrete or continuous set of spectral
functions, it is necessary to determine the spectral amplitude f, or the spectral intensity F(s).
For the coefficients f  to be obtained easily, the set of spectral functions must have the prop-
erty of orthogonality. The concept of a transformation, therefore, hinges on expressing an
arbitrary function with a series of suitable functions which possess the property of orthog-
onality.

A complete transformation involves three operations. These are:

(1) Make transformation
(2) Obtain solution in transformed domain
(3) Perform inverse transformation.
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The first operation characterizes the transformation and the problem to which it is being
applied. The transformation made must serve the purpose of matching the source of the prob-
lem to its application. For instance, when dealing with numbers, "number" transforms such as
logarithms are used, whereas with functions, “function' transforms such as the Fourier, Laplace,
Mellin, Hankel, and Z transforms are employed. The type of kernel the transform has deter-
mines the function or system to which it inay be applied. The second and third operations pro-
vide the reduction of mathematical complexity or improved visualization of the problem.

Table F-1 lists differential, integral, and difference equations which are of importance in
many physical applications and which relate the response of a linear element to its excitation.
The type of transform best suited for each equation and the results obtained through its use is
also given. It is seen that the Laplace transform is effective in reducing an nth order dif-
ferential equation with mth degree polynomial coefficients to one of reduced order in the
transform domain where it is assumed that n is greater than m. The Laplace transform,
however, is usually used to solve a linear constant coefficient differential equation or integral
equation of the Volterra type. Both become algebraic in the transformation. It is also used to
aid solving linear time-variant systems where the time-varying parameter is a function of the
first power of (t). Inthis case a first-order differential equation in the transformed domain
is obtained. In general, the Laplace transform enables the steady state solution, the transient
solution and all initial conditions to be treated in one single operation. This is in contrast to
the classical method of solving for the source-free and forced solutions individually, summing
them to give the generzl solution, and evaluating the constants of integration from the initial
conditions.

The Mellin ar.d Hankel transforms lend themselves to solving problems concerning time-
varying linear systems. In particular, the Hankel transform is used to solve Bessel-type
differential equations since its kernel is a Bessel-function. The Mellin transform is applied
successfully to systems characterized by an Euler-Cauchy differential equation or Fredholm
integrai equation reducing both to algebraic form in the conjugate domain, A Hankel transform
pair is symmetric and thus only one table is necessary for the direct and inverse transforma-
tions. That is, the same column can represent either the function or its transform. This is
not true of the Laplace or Mellin transforms since the transform variable is complex and the
inverse transform is obtained by performing a complex integration.

The Z transform is used to solve linear difference equations. The difference equation
applies to a discrete signal system and is analogous to differential and integral equations which
correspond to continuous signal systems. The Z transform may be used to express discrete
"signals" in terms of sums of geometric sequences just as the Fourier series or integral
expresses continuous "signals."

Many operations encountered in information processing may be expressed by Laplace,
Meilin, and Hankel transforms. The Laplace transform has perhaps been developed more
fully because of its relatively simplicity for the operations shown on Table F-4. The Mellin
transform is appropriate for multiplication, differentiation, and convolution in the time domain
while the Hankel transform is cuitable for scale changes (compression or expansion) and for
first order differentiation. It is important to note that a linear addition in one domain goes
over as a linear addition in the conjugate domain for all thres transforms, since all integral
transforms are derivable from the superposition integral.
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Effectiveness of Transforms for Solving Several Linear Differential, Integral,
and Difference Equations Describling System Behavior

—

LINEAR

f(t) —input ELEMENT | _output — L y(t)———

differential
L _linear integral

difference

equation e ———.

Equations Dascribing System Behavior

Solution Using Transforme

Class

Equations of Efach Class

Type

Result of Transiormation

Differantial

1. nth ordar differential squation
with mth dagrae polynomial co-
efficients:

n
&,
[ 7 Q_M = f(t) n>m
Ttk
k=0 r=0

Lepisce

Flp) = i £(t) o~Pt dt
+

n [ . 3 ¢
ZZ(-I)' o 4 le¥yie) - k-t ‘—’—(rtl = F(»)
%20 reo L T 4t° 420

An mth otdar differentis] aquetion having nth dagras poly-
nomial coafficlents. For the spacial case of constant co-
efficients (r = 0), tha sdova raduces to an algebraic
equetion.

2. Euler-Ceuchy divfarentlal
equatior:

L]
D e YL gy
atn

=

F(s) =S f(t) t*>1dt
(]

F(s)

]
Z o, (=1)" a(s+1) (s+2)... (s4n+1)

"o

¥(s) =

(Algebraic)

3. Tha Bessal diffarantial
equetion:

) Folo)
Yalo) = I:I)'| (o2 7 o)

time-varying paramatar Is o
function of the first power ot
t.

Exzmpla: Tha Laguerra

: 2 ' Folo) =I 1) f(t) at )
[:Tz N {' d!f' 1:?* ‘{] y(t) = (1) o (Algebraic)
4. Diffarentlal csustion whera tha Lsplace s (nt )

F(p) = j. F(t) e~?tdt

v'(p) ¢ - v(») = F(»)

The transform equetion is ¢ naw differential aquation of
reducad order (i). For the special casa of f(t) ~ 0, v{»)

= Byfat Byfuy t Bafacz b oo

vt
aguation is solvad es:
d¥y(t) oxit) _ Y
e RN U )y = 1) o) = (—a;...—,)‘
y(o) = i, n =0 or en Intager which |s the Lapiece transform of the Laguerre polynomlel
) é" -
L(t) = o at e (t" "9
integral i. The Yoitarre integral aquation Leplace \ F(»)
of the second kind with a dif- (o) = T+ &(p)
ference karnel: ¥(p) -jf(t)
= Pt dt (Algesdreic)
¢ K(s) QY
j K(t-7) yr) o7 v y(t) = f(8)
L]
2. Tha Fredholm integral equation Mellin F(s)
of the first type with o prod- V(s) = (s}
uct kernel: F(s) f(t)
= S‘ %=1 dt]| which is an elgebraic equation. Onca v(t) is obtelnad by
K(s) e {k(t) invarsion, y(t) can te obtained from the following relation:
k(tT) y(7) dr = (1)
f 0
YRS T
Diffarencs Linaar diffarenca aquation: "z »
F(2) ; [
a + OgY,_ gt Ca¥a gt ave L "=
nt %Y1t Fa-2 F(z) = ). f(aT) o= 1) = —p————
e a 2"

T = sampling intarvai

™

which is cleerly algebreic. Calculating ¥(z), tha response
¥, ot tima t, = aT Is

v = y(ty) = Y(2)2"
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G. LINEAR ANALYSIS OF CIRCUIT ELEMENTS

1. INTRODUCTION

The behavior of linear elements can be described by integro-differential equations involv-
ing the input and output. Such equations relate the output to the input and formulate the basic
relationship between ""cause and effect,’’ the exact nature of which depends upon the specific
element. When the element is linear, the integru-differential equation will be of the form

oty 50 4oy IO ko Ly eeedeg e g v agonce =
dt dt m- fald {G__t}
v v-1

b,(t) 9—°—‘—:—) + by (D) d—vc—_%t—) +ooet f—--jbp(t) c(t)dty ~e-dt, + oo+ bo(t)e(t)
dt dt o B

where c(t) is the driving function and r(t) is the output. The linearity is due to the fact that
the dependent variable and its derivatives and integrals, are of the first power and are com-
bined in a linear equation.

The basic property of linear elements is that of linear superposition. It is important to
recognize that linearity does not require that coefficients of the integro-differential equation
be constants but that their values be independent of either the input or output. If the coeffi-
cients are constant, the element is linear time-invariant and has the property that when an
element's response to a given function is known, the response to the derivative, or integral of
the input function may be found by differentiating, or integrating the original response. If the
coeffici..... are independent functions of time, the element is linear time-variant and the anal-
ysis is more complex. Sections G-1 to G-11 will be concerned with the characterization of
linear time-invariant elements, and in section G-12, the analysis is extended to include linear
time-varying elements. The reason for discussing linear elements is that most elements can
be considered to be linear at least over some operating range. The nonlinearities may then be
in terms of second order perturbation effects.

2. LINEAR SUPERPOSITION

The concept of linear superposition plays an extremely important role in element analysis
and synthesis. A basic aspect of the superposition principle is the classical method of obtain-
ing the complete solution of a linear differential equation. This is performed by taking the sum
of the free solution (transient response) and of the forced solution (steady-state response)
where the initial conditions are used to evaluate the constants of integration. This technique
may be extended by resoliving any general source function into component functions for which
the solutions can be found more readily.

A useful form of the superposition theorem utilizes the response of an element to a step
source function, If a general source function c(t) is resolved into step source components as
is illustrated in Figure (G-1),then the response r(t) of an element to this excitation may be
given in terms of its normalized response A(t) to a step source, defined as

response to step source

ACt) = (G-2)

magnitude of step source
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o
G(T+) = €T~}
—r

Figure G-l - Resolution of gcneral source function
into step source components

if c(t) is a continuous function of time t from 0 < t < ® and its step source components are
increased without bound, then the summation of the responses to these components may be
approximated by an integral:

ret
r(t) = A(t) c(o+) + j A(t=-T) dcd(tt)

re0

dr . (G-3)

tsr

This is often referred to as the Duhamel integral or superposition integral. If the excitation
c(t) has finite discontinuities as in Figure (G-1) at ¢ = T, then the integral in (G-3) must be
separated into those parts where c(t) is continuous over the limits of integration and a
response term to distinguish the finite discontinuity. Therefore, if t > T, then

ret
r(t) = A(t) c(o+) + j A(t=7) dcét') dr
r=0 ter
rue>T a |
+ At-T) [e(T+) - c(T-)] + I At=T) C;:) dr . (G-4)
T |t-1'
Equation (G-3) may also be expressed as:
ret
r(t) = % s AMt=-7) (1) dT. (G-5)

r=0

This form may prove more useful depending on the complexity of the derivative of c(t) and of
the integral.

Thus, if the response of an element to a step source is known, then its response to an
arbitrary source function can be deduced from this information. In general, any linear cause
and effect relationship involving a single independent variable can be expressed in the form of
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m such as (G-3) or (G-5). An indication of the importance of

a modified superposition theore
all integral transforms may be derived from it.

the superposition integral is that

3. TRANSFER FUNCTION

T

d been indicated that the representation of functions could be made by a

A variety of techniques are also available for describing physical
elements having an input and an output. Some of these include the use of circuit diagrams or
mathematical equations. One method for describing the characteristics of a linear, stationary
network is to specify its transfer function. The transfer function is defined to be the ratio of
the Fourier (or Laplace) transforms of the output and input. The important characteristics of
a transfer function establish the dependence of certain of its pro-erties as a function of fre-
quency, such as gain or phase angle. Thus,the complex transfer function H(jw) of an element
may be described by steady-state transmission properties, for example,

Previously it ha
large number of methods.

H(jwy = eI (I3 (G-6)

|H(jw) | /B(iw) (G-7)

B(jw) = angle H(jw) is the phase.

where A(jw) = log |H(jw)| is the gain, and

asurement or by analysis. The most com-

The transfer function may be determined by me
idal input to the element and record the

monly used measuring tect ique is to apply a sinuso
output ampilitude and phase. This test is repeated at a number of frequencies to determine the

gain and phase curves. Obtaining the transfer function by analysis is accomplished by an
algebraic process that is equivalent to solving the element’s cGifferential equation for the
steady-state sinusoidal input case. The procedure for such an analysis is the following:

(1) Determine the differential equation relating output to input.

{2) Substitute the alzgebraic term (jw) for the operation d/dt, (jw)2 for dz/dtz, 1/jw for

fde, 1/(Gy? for ff(de)”.

(3) Solve the resultant cquation for the ratio of output to input as a function of radian fre-

quency «.

(4) Convert the ratio from complex form to magnitude-phase form and plot the results.

If the input is a periodic time function f;(t) whose Fourier series converges, then

fi(t) = Z D( jnw,) ginest T= % (G-8)
n=.-®

where T is the fundamental period, and the complex coefficients D(jnw,) are given by

T/2

. 1
D(jnwy) = T £,(t) e
-T/2

mjnw gt R
dt . (G-9)

From the definition of the transfer function H(jw), the system output in response to the nth

input component is

fo () = D(inwg) H(jnwgt) exp (jnwot) - (G-10)

de being multiplied by the absolute mag-

That is, the output is the input component, its amplitu
d the phase advanced by the angle of

nitude of the transfer function at the frequency nw, an
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H(jnw,), the phase of the element at this frequency. Since the system is linear, its total
response to f;(t) is the sum of the component outputs fon(t) and may be represented by

£(t) = Z D(jnw,) H(jnw,) exp (jnw,t) . (G-11)

This is the steady-state output of a linear, constant-coefficient element when its input is a
periodic function cf time as given by (G-8).

From Fourier analysis, a knowledge of H(jw) for all frequencies determines the transient
as well as the steady-state properties of linear filters. If f;(t) is a transient having a Fourier
transform F;(jv), then the Fourier transform of the output of a linear, stationary device in
response to the transient input i equal to the Fourier transform of the input times the trans-
fer function, i.e.,

F,(ied = F;(je) H(jw) . (G-12)

4. IMPULSE RESPONSE

Another characterization of an element is in terms of time functions. A very useful and
important time function is the unit impulse &§(t) defined by the relations

5(t-T) = 0 t¥T (G-13)

S(t-Ty dt = 1 €>0. (G-14)
T-€

Equation (G-13) indicates that §(t -T) is zero everywhere except at t =T while (G-14) requires
that the impulse function have unit area. The Fourier spectrum of this input is

o

F;(joy = J- &(t) e ¥ ae = 1. (G-15)

RS

Thus, the spectrum of the unit impulse has unit amplitude and zero phase for all frequencies.
It is interesting to note that the energy contained in a unit impulse in any frequency band
wy < w < w, is proportional to the bandwidth, i.e.,

“2 @2
ll-'i(w)[2 dw = f do = w, - @ . (G-16)
@iy “r

The energy of the frequency components in a unit impulse is therefore concentrated at the
extremely high frequencies.

By substituting (G-15) in (G-12)
Fo(j@) = 1-H(jw) = H(jw). (G-17)

Thus, the Fourier spectrum of the output of an element when a unit impulse is applied is the
transfer function of the element. The output f (t) is expressed as
o

f(t) = & j' Fo(ia) o' *" do = j H(jo) % dt. (G-18)

o«
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f a fixed-parameter linear element is

The unit impulse respcnse (commonly designated h{t)) o
function H(jw) of that element. Since

therefore given by the Fourier iransforma of the transfer

. r -jwt
H(jo) = ) h(t) e de, (G-19)

then similar to the case for a step source response, the response of an element to an arbitrary
source function can be obtained if its response to an impulse is known.

5. CONVOLUTION THEOREM

In the discuséion of the superposition integral it was indicated that the response r(t) of a
fixad-parameter linear element to an arbitrary input ¢(t) could be expressed in texms of the
element's step response A(t); one such relationshin was given by (G-5), as follows:

¢
r(t) = j %A(t-'r) c(t) d7 .
)

(G-5)

has been brought inside the integrand for convenience. For time-

The derivative operator
invariant elements the response to the derivative of an input signal is the derivative of the

response to the origiral signal. Since the derivative of a step function is an impulse, the
derivative with respect to time of the displaced step response A(t - 7y in (G-5) may be con-
sidered as the displaced impulse response h(t - r). The excitation <(7) is unaffected by the
operation since it is a function of = only. (G-5) may then be written as

r(t) = h(t-7) c(T) dr . (G-20)

Qi

This relationship is referred to as the convolution integral and is equivalent to representing
the input function by a series of weighted impulses and then summing the responses to each.
The convolution integral is a fundamental tool in linear analysis and contains the condition for
the physical realizability of a transfer function, namely, that the input 2nd output be related by

(G-20).

6. TRANSFER FUNCTION METHOD

In referring to elements as being linear, it should be recognized that there are several
properties of a signal to whick the element can respond linearly, for example, it may be linear
on the basis of amplitude, or on the basis of energy. In optics, the terms "coherent” and "'in-
coherent' elements are used to apply to elements which respond linearly to the amplitude and
to the energy of the input, respectively. These terms may also be applied to circuit =lements.

When an element is coherent, having a transfer function H{ja), then by applying Fourier
analysis the frequency spectrum of the output F (jw) can be given as

Fo(jw) = H(jo) Fi(jo) (G-12)

ransform of the input. It is seen that with a coherent element

where F;(j«) is the Fourier t
both the amplitude and phase of the Fourier components of the input may be controlled and that
the attribute of the Fourier method is that a convolution integral is replaced by a multiplica-

tion process.
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For a stable linear incoiierent system the following relationship between input (stochastir)
and output holds:

IF Gyl ? = Ml ? IRl ? (G-21)

This states that the power spectrum of the output of an incoherent element is equal to the
power spectrum of the input times the square of the magnitude of the transfer function. An
incoherent element is insensitive to phase information and behaves as an envelope detector.
A relationship such as (G-21) will exist whenever the input is random noise.

7. USE OF RANDOM NOISE IN DETERMINING TRANSFER FUNCTIONS

If x(t), a typical member of an ergodic ensemble, is the input to a fixed-parameter stable
linear system, then the output y(t) will also be a typical member of an ergodic ensemble. The
cross-correlation function ¢, () between input and output is

T»®

\[ny(‘r) = limit 21—1. 5 x(t) y(t+7) dt. (G-22)
-7

The output may also be expressed by the convolution theorem

y(t) = j h(pB) x(t=p5)ds. (G-23)

o

Substituting (G-23) in (G-22) and changing the order of integration:

Yay(T) = ,[ h(B) Yixx(7 = B) dB (G-24)
]

where y,, is the autocorrelation function of the input. Equation (G-24) is a fundamental equa-
tion for any linear transmission system whose input is a typical function of an ergodic ensem-
ble. Taking the Fourier transform of (G-24)

W (f) = H(jw) Wy (f) (G-25)
Wey(D)
H(jo) = W—"(—f;. (G-26)

Thus, the transfer function is equal to the ratio of the cross-power spectrum between input and
output to the power spectrum of the input. Since W,,(f) is real, the phase of H(j«) is the same
as that of W“(f ) for all frequencies.
For the special case of white noise, the power spectrum is a constant
We() = N, (G-217)

The transfer function H(jw) and impulse response h(7) then simplify to

W,y ()

-]

(G-28)

H(jo)

h(7) fiN‘—’(—T—) . (G-29)

o




§. APPLICATIONS OF FOURIER ANALYSIS

Fourier analysis is most useful in expressing the transmission properties of linear time-
invariant elements. This is attributed to the fact that a Fourier frequency decomposition is
insensitive to translations in time (only the phase of the Fourier spectrum is modified). It
has been previously shown that Fourier analysis can be extended to nonrepetitive as well as

repetitive signals and consequently has many applications in element design. Some of these are:

(a) To predict the element's response,
(b) To determine the element’s dynamic specifications,
(c) To evaluate or interpret test results.

In determining the output of an element for a given input, it is desirable to know its

response to a sinusoid. If the transfer function is H(j») and a sine wave of angular frequency «

and amplitude (E) is applied to the input, the output will also be a sine wave of frequency «,,
having an amplitude |H(jw,)| + E with its phase advanced by the angle of h(jw,). By resolving
an arbitrary input into its harmonic compornents, each a sinusoidal wave of different frequency,
the corresponding outputs may be determined. For a linear element, the resultant response is
the complex addition of these outputs. This method is illustratad in Figure (G-2) for a square-
wave input and a given element.

A [ l | L — | ELEMENT |— ?

l A
* /" \ /,f N
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ELEMENT | o\ NN ©
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'
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VAWAN

Figure G-2 - Fourier analysis to predict
element response

To determine the gain and phase characteristics of an element which are necessary to
produce a desired nutput for a given input, the input and output waveforms are resolved into
their respective Fourier components and compared at corresponding frequencies. This pro-
vides amplitude and phase information, two sets of requirements which the element must
satizfy. When the deconiposition yields harmonic components at different frequencies, the
elemant is nonlinear. Figure (G-3) illustrates the procedure where reference time t  is
needed to determine phase requirements.

The preceding method may also be used to determine the gain and phase characteristics
of an unknown element from known test results. It should be rccognized, however, that in s0
doing it is assumed that the element is linear.
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Figure G-3 - Fourier analysis to determine
element's dynamic specifications

In making a Fourier analysis, it is necessary

w to interrelate the time and frequency domains,
::f, since the effects of errors made in one domain
3 A must be known in the transform domain. Repre-
E I | l [ l i I sentations in time and frequency for a square
<] T 2T 3T wave are shown in Figure (G-4). The discussion
TIME (SCCONDS) of linear superposition in section (G-2) showed

that an element's response to a step input may be
used to determine the output waveshape for an
arbitrary input. Practically, this cannot be done
since a step function has many significant har-
monic components. Cunsequently, the output can-
not be easily calculated unless an approximation
is made. Comparing Figures (G-5.a) and (G-5.b),
it is seen that the step response is the same as the
first half-cycle of the output response to a dis-
placed square-wave input. Therefore, the readily
calculated response of Figure (G-5.a) gives the
desired response of Figure (G-5.b) during the first
t, seconds. This technique is used to find the
step response of any system whose transfer func-
tion is given. The validity of the resuits and
facility of calculation will depend on the period
chosen for the square wave. If too short, as in
Figure (G-5.c), the output will never reach steady-
state and if too long, as in Figure (G-5.d), there will be an unnecessarily large number of har-
monic components to calculate. A suitable frequency for the square-wave cycle is about one
eighth the cut-off frequency of the transfer function. The fundamental and the odd harmonics
up to the twenty-fifth should be calculated for a reasonable approximation, making fourteen
harmonic terms in all.

MAGNITUDE
(CENTER TO PEAK VALUES)

Figure G-4 - Harmonic components
of a displaced square wave

To determine tl: > steady-state response of an element from the transient response, it is
assumed the elemem oehaves liiiearly throughout the transient response test. The test data
should be known with sufficient accuracy since small changes in the transient response may
be equivalent to larger changes in the frequency response. The procedure consists of first
replacing the step input with a train of pulses of equal amplitude. Then the response to the
pulses will be the same as for the step for the duration of the pulse. At this time, the input
and output waveforms are assumed to return to zero in the same manner as they originated
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Figure G-5 - Determining transient response
fiom frequency response
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Figure G-6 - Determining frequency response
from transient response

and are repeated in alternate inversions in equal time periods. This is illustrated in Figure

(G-6). The transfer function is deter mined using the method described earlier and illustrated
in Figure (G-3).

9. GENERAL CONDITIONS FOR PHYSICAL REALIZABILITY AND STABILITY

Criteria for physical realizability can be given in terms of either the impulse response

h(t) or the transfer function H(j«). Specifying one implicitly defines the other since they are
related through the Fourier transform.

Use of the impulse response involves the following requirements:




103
(1) h(+) must be zero for t < 0,
(2) n(t) must approach zero (with reasonable rapidity) as t approaches +w,

The first condition states that a networs cannot respond to an impulse before the impulse
arrives, while the second implies that the effect of an impulse will eventually die out. The
latter thus ensures the correlation introduced by a realizable element to be of finite range so
that if the input to such an element was ergodic, the ouiput would also be an ergodic function.
These conditions are sufficient as well as necessary for physical realizability. Sufficiency is
used in the sense that any impulsive response h(t) satisfying both conditions can be approxi-
.nated as closely as desired with a passive linear network, used with an ideal amplifier.

In terms of the frequency response, the principal conditions for physical realizability are
referred to H(jw), considered as a function of the complex variable w. H(jw) must:

(1) be an analytic function in the half-plane defined by Im(w) < 0,

(2) behave on the real frequency axis such that

j” log [H(jw)l
——————— dew

1+ w?

is a finite number.

The first condition establishes stability, that is, the element must not be capable of an oscilla-
tion that builds up in time. The second condition specifies the requirement for the amplitude
function.

If H(w) is a transfer function satisfying both conditions, then for a given gain function
Aw) = log |H(w)| there i3 a minimum possible phase characte-istic. For a network of the
minimum phase type, H(») has neither zeros nor poles in the half plane defined by Im(w) < 0.
The phase B(«,) atthe frequency (w,/27) is given by

2w, < A(w) = A(w,)
= ) T de (G-30)
0 () - (uo

B(w,) =

If the derivative of the gain function is easier to work with than the gain function itself, then
(G-30} may be expressed as

dA @+ w

@
B(w,) = %J‘ 3o log dw. (G-31)
0

- w
@ o

A minimum phase element has the important property that its inverse, with the transfer func-
tion H-!(w), is also physically realizable. A signal passed through a minimum phase element
H(«) may be recovered by passing its output through an inverse element H-!(«) without incur-
ring a time delay. If a signal is transmitted through a nonminimum phase element, the best
that can be done is to provide an element having the properties of the theoretical inverse except
for a phase lag. Thus, there is no physically realizable exact inverse for a nonminimum phase
element and a signal passed through it can be recovered only after 2 delay. Both types of ele-
ments, including the inverse of the minimuin phase network, are illustrated ir Figure (G-7).

All physically realizable impulse responses and transfer functions may be approximated
with desired accuracy with passive lumped linear networks and ideal active elements. A pas-
sive linear network, when defined in terms of time and energy, is restricted by the follnwing
conditions:

(1) it is linear,
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Figure G-7 - Ilustration of filters of (a) minimum phase shift type, (b) non-
minimum phase shift type, and (c) the inverse of the minimum phase shift

type

(2) the total energy at the network is positive,

(3) there is no response between any pair of terminals before an excitation is fed to the
network.

For two-terminal networks, a necessary and sufficient condition that it be linear passive is
that its impedance function be positive and real. From a consideration of the physical realiz-
ability of a lumped linear stable element the transfer function has several important properties:

(1) the transfer functions are expressed as ratios of polynomials of jw (or s) with real
coefficients,

(2) the numerator polynomial cannot be of higher degree than the denominator,

(3) the denominator polynomial can have roots in the left half-plane only.
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10. SHORT-TIME AUTOCORRELATION FUNCTIOCN AND POWER SPECTRUM

Ordinarily, the representations of autocorrelation functions show tlie averaging process
over an infinite length of time. This implies, for example, that in the frequency domain, the
passband of the filter with which the power spectrum is measured should be infinitely narrow.
Both requirements are, of course, not realizable. The autocorrelation function and its cor-
responding power spectrum, when determined experimenially, are both inherently time depend-
ent and consequently are approximations. For some applications it may be necessary to rep-
resent the correlation function or power spectrum in terms which correspond more closely to
the con‘itions under which they have been determined experimentally.

Wiener's theorem relating the power spectrum to the autocorrelation function may be
derived for finite time constants. The first step.involves establishing physically realizable
measuring procedures in terms of mathematical operations. The measurement of the short-
time autocorrelation function may be defined by the'foilowing operations:

(a) The input function f(t) is delayed by a time 7, yielding the function f(t-7),
(b) Multiplication of f(t) by f(t-7), yielding the product function

() = B(E) f(t+7) (G-32)
{c) The function ¢, (t) is averaged by means of a lowpass filter having a transfer function

o 1
HGo) = sy (G-33)

where » is the angular frequency. The output of the'filter yields a point of the short-time
autocorrelatio. uanction and may be expressed, using the convolution integral, as a weighted
average of the whole past of the function y_(v), i.e.,

¢
o
Yo(T) = J ¥ (x) h(t=-x) dx (G-34.a)
t
= 2a ‘. Y (%) e-2a(t--x) dx . (G-34.1)

The weighting function is .he impulse response of the low-pass filter, and is illustrated in
Figure (G-8(a)).

The measurement of the short-time power spectrum is defined by the following operations:

(a) The input function f(t) is passed through a bandpass filter having the transfer function,

g (20)1/2 (B + jo)
H¢i = A4  \E I
a B+ jy? + @l (G-39)

where «_ is the natural frequency of oscillation of the filter, and 8 is the damping constant.
Let the output of the filter be g/(t).

(b) The input function f(t) is passed through another bandpass filter with the transfer
function

I (20.)1/2 @,
(jo) = (B + jw)2 . w: . (G-36)
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Figure G-8 - Networks yielding the transfer functions necessary
for obtaining the short-time (a) autocorrelation function, and

(b) power spectrum

The output of this second filter is designated as g (t).

(c) The outputs of the two filters are squared and added to yield a point of the short-time

power spectrum
Wy(w) = [g.:,<t>]2 + [k t)]2 : (G-37)

The transfer functions given in (G-35) and (G-36) may be realized by the network of Figure

(G-8(b).

The short-time autocorrelation function v (7) is related to the short-
trum VW () by

time power spec-

ayrr &

Yy = L3 = S W (w) cos wr dw (G-38)

-&
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and
We(a) = j UNE)] e’a”-l cos wr dr (G-39)
1 2a
= F_[ He(2) — (o-my2 92 (G-40)
where
Hy(w) = j Y(T) cos wr dr (G-41)
2a ¢ -calr]
m = j e cos wr dr . (G-42)

Equation (G-41) indicates that Hi(«) is the Fourier transform of the short-time autocorrela-
tion function ¥(r). Since W (w) is a weighted average of H (w), it seems to indicate that if
the same value of o is used in both types of measurement, the short-time autocorrelation
function will provide more accurate information abcut the power spectrum than the direct
determination of the power spectrum by means of filters. The validity of the pair of recipro-
cal relations expressed by (G-38) and (G-39) is strictly limited to the results of the measuring
procedures specified above. While other physical networks may be substituted for those shown
in Figure G-8, only the latter vields an averaging process independent of r and results that
are reciprocally related at any time t.

The concept . . .* “rvt-time power spectrum has been used in speech analysis where it is
referred to as a scnd spectrogram. Similarly, short-time autocorrelation functions of speech
have been studied. The fact that these two tools of analysis are mathematically related
increases their usefulness as representations.

11. LINEAR SYSTEM APPROXIMATION

INTRODUCTION

The approximation problem of linear system synthesis is the determination of a realizable
system function which closely approximates a prescribed system function. If the latter is the
impulse response h(t), the approximate impulse response h*(t) is then defined by a sum of
predetermined approximating functions P.(t) as

N
h'(t) = D a gty . (G-43)

As was indicated in the discussions on orthogonality, one way of specifying h*(t) is to select
a, such that the integral of the Square of the magnitude of the difference between h(t) and
h*(t) is a minimum. This requires that the #a(t) be orthogonal, and if normalized, that they
satisfy the relation

[
[
=
[
3

j Balt) B (t) at (G-44)

=0 nfm. (G-45)
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The minrimum integral-square error & ;. is then,

© N
)
By E J h2(t) dt - al. (G-46)
mi gy nZE_i, h

Equation (G-46) requires that
j hi(t)dt < ©.

Realizability of h*(t) requires that h*(t), and consequently the ¢,(t), should be zero for
negative time.

INTEGRAL-SQUARE ERROR

The integral-square error criterion is the basis of an orthonormal function approximation,
resulting in an approximation error which generally oscillates about zero with relatively con-
stant peak amplitude. A disadvantage of the square weighting is that there is no time interval
of appreciable length where the error is very small. However, this disadvantage may be
relieved by properly weighting the approximation (G~43).

Approximations in the time domain involve approximations, or errors, in the frequency
domain. An acceptable approximation of the impulse response will ensure that the approxi-
mation oi the gain, and real and imaginary part of the transfer function H(je) is appropriate.
However, minimizing the integral-square error may lead to phase errors, and it may be nec-
essary to consider other constraints in order to control phase. Although the integral-square
error as a criterion may provide a simplification of analysis and computation, the implica-
tions of its use must be carefully considered and understood.

CONSTRAINED AND WEIGHTED APPROXIMATIONS

A few methods which may be used to extend the use of the integral-square error criterion
will be discussed briefly. A constrained approximation is one in which the coefficients in
series (G-43) are functionally related so that a property of h*(t) is specified. Mathematically,
a constraint may be expressed by

k = K [h'(t)]

= K [2 bn¢n(t)} (G-47)

where K is a functional describing a property of h*(t), k is a specified value of the property,
and

N
B8 = 2L b () (G-48)

is the constrained approximatior. Examples of possible constraints are:

(a) Having the area under h*(¢) equal unity which is equivalent to normalizing the trans-
fer function, i.e., H*(0) = 1.

L] N ©
1= s.h"(t)dt = b, j(¢n(t) dt.

o n=1
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(b) Requiring that K*(jo) have a phase shift +180° at « = @, or equivalently, making h*(t)
equal zero at ¢t = 0.
N
0 = h*0) = ) b g, (0).

n=1

(c) The integral-square value of h*(t) equals unity

1= j n*(o)de = Zb:.

- n=1

Conditions (a) and (b) are linear in the b,, while condition (c) is nonlinear and is eqguivalent to
normalizing the average power contained in the impulse approximation,

A weighted approximation is one which attempts to improve the integral-square error.
The weighted integral-square error £, may be written as

-

m
€
n
'
g8

[h(t) - nr ol weeyde (G-49)

2
[W1/2(t) heey - Wl h‘(t)] dt . (G-50)

b
'
e‘_ﬁe

Thus, w1/2(t) h(t) may be approximated by
1/2 -
Wl BT = ) a e (t). (G-51)
n=1

From the theory of orthogonality,

W26 h(6) #y(0) de (G-52)

o

-}

1}
ter—, @

8

and the weighted approximation h*(t) is

1/2
(

hey =W %0 > 8,80 (G-53)

n=1

where the functions ¢ (t) are now orthonormal with respect to the weighting function Wl/z(t).

REALIZABILITY OF h*(t)

Realization of 2 network may be readily accomplished when the transfer function of the
network is known as a ratio of polynomials with real coefficients. Thus, if the problem of
obtaining the Fourier transform of the impulse response as a ratio of polynomials is solved,
then it is possible to complete the realization of the network.

As a result of the requirements for physical realizability of a lumped linear stable sys-
tem, the impulse response approximation h*(t) of the system consists of exponential functions
and has the form

N s t
K (t) = ane (G—54)

n*i




110
where
1. R, and s, may be real or complex,

2. h*(t) is a real function,

3. s, has a negative real part.

Equation (G-54) may also be written as

k m P
-b, t ~a;t “—a t
h*(t) = Zaie s ZAie ' sin wt + ZBie 17 cos wt . (G-55)

i=1 i=1 i1

Hence, only three types of terms can contribute to the overall impulse response h*(t). These
are

gy(t) = s ot (G-56.a)
ga(t) = AL i & (G-56.1)
ga(t) = Be ®' cos wt . (G-56.c)

In general, the quantities b, a, and » are positive real values and independent of time, while
the quantities a, A, and B may have any real value and may also be functions of time.

When a transfer function is expressed as a rational fraction, the. roots of the polynomial
in the denominator are called poles while those of the numerator are referred to as zeros.
Every transfer function can be expanded into partial fractions with terms for each pole and a
corresponding time function. The impulse response would then be the sum of the time func-
tions associated with the poles. The significance of the poles is that the form of the relating
time function is determined by their location in the '"'ju' or "s" plane. For example, the poles
may be:

1. Real and negative . . .

The mode of response is a decaying exponential
2. Zero...
The mode of response is a constant
3. Purely imaginary, two roots form conjugate pair . . .
The pair of modes combines to form a sinusoid
4. Complex with ncgative real parts, two roots forming a conjugate pair . . .
The pair of modes combines to form a damped sinusoid

The approximation may be improved for a given number of poles by shifting the zeros

relative tc each other. A change in the location of the poles alters the quantities in (G-56.a),

(G-56.b) and (G-56.c) and changes h*(t). The zeros of the transfer function contribute to
amplitudes and phase angles but do not influence the form of the time function as do the poles.

REALIZABILITY OF SAMPLING METHODS

Early discussions of sampling theorems related the number of discrete values necessary
to reproduce a time function. Subsequent discussions of physical elements have shown that the
concept of an instantaneous sample is not possible since circuits cannot respond in a nonzero
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interval of time. Practically, multiplying 2 signal by a train of impulses actually involves
multiplying it by a train of pulses with the duration of each being a finite time, say t,, and the
interval between pulses being the sampling time T.

Figure (G-9) illustrates sampling with samples of nonzero duration. A Fourier analysis
of the unit sampling wave g(t) yields a dc term plus harmonics of the sampling freguency.
This can be expressed mathematically as

g(t) = K+ 2K -“-—:Kniq cos 2—7;.lt' (G-5T7)

n=1

where K is the ratio of the pulse duration to the interval between pulses, i.e., K = t /T, By
passing the product of the signal f(t) and the sampling function g(t) througha low-pass filter,
a replica of the signal is obtained. This representation is reduced in magnitude by a factor K
(neglecting the delay and any distortion caused by the low-pass filter). Amplifying by /K will
then restore it to its original value. 'The spectrum of the sampled signal will be the spectrum
of the original signal, reduced in magnitude, plus upper and lower sidebands about the sampling
frequency f. and its harmonics.

Another important characteristic of circuit elements is that amplitude and phase response
characteristics are not independent. Their relationships may be formulated explicitly by
reguiring zero response prior to the time that the input is applied. The amplitude and phase
characteristics that define an ideaiized low-pass filter are not realizable in a physical net-
work. However, although an ideal filter is nonrealizable, it may be approximated by physi-
cally realizable elements to within a specified accuracy. The closer the approximation, the
longer the delay or time of propagation from input to output and the longer the duration of
transients in the output in response to freguency components approaching cutoff. In the actual
design using sampling principles, the factors which affect the use of bandwidth are:

(1) the tolerance to delay,

(2) the tolerance to the deformation of the sampled wave in the output due to transients,
and

(3) the required precision of resolution.

Depending upon the manner and extent to which the highest freguency components of the
sampled wave exceed W, 2W samples per second may not adeguately represent the arbitrary
wave being sampled. Practically, there are always limitations of bandwidth and hence there
is always an "uncertainty’ in the operation on a signal wave by physical elements. By con-
trolling the transmission, at the expense of delay, the uncertainty can be made, in theory,
arbitrarily small. It is important to recognize that the uncertainty exists in the absence of
other perturbing influences. In most problems it is necessary to consider not only structural
components with the associated realizability reguirements, but alsc informational aspects
which must necessarily encompass noise and component tolerances. Certain aspects of these
interrelationships will be discussed in later sections.

12. TIME-VARYING ELEMENTS

INTRODUCTION

A time-varying element is one where the coefficients of the differential equation describ-
ing its behavior are functions of time. If they are independent functions of time, the element
ig said to be linear. The relation between input and output of a time-varying system can be
expressed in a variety of ways other than those based on the use of differential eguations. The
need for alternative representations is evident, since many time-varying problems such as
those involving randomly-varying media and fluctuating targets cannot be characterized by

ordinary differential equations of finite order.
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A primary reason for considering time-varying elemernts is that they permit generaliza-
tion of linear network theory. Time-varying elements are the circuit counterparts to wave-
forms having time-varying spectra. This suggests that descriptions which were used to char-
acterize time-dependent functicns may be applicable for element analysis.

CLASSICAL THEORY OF DIFFERENTIAL EQUATIONS

With the exception of linear equations with vaiviable coefficients which are reducible to
those with constant coefficients by a change of variable, there are no general methods for solv-
ing such equations of order higher than the first. In general, solutions of differential equations
with variable coefficients cannot be expressed in terms of a finite number of elementary func-
tions, and lead to new functions which are defined either by definite integrals or by infinite
series, such as Bessel or Legendre functions.

For a time-varying element of input c(t) and output r(t), the homogeneous solution of its
linear differential equation of order n,

n n-1
a (t) 9Lnt) + a,(t) d__:T(lE_) +rectoa, 1°t) de(t) +a (t) r(t) =
dt dt
d et d" et d
bo(t) —L(—m—) + by(t) —;nﬁl—) +eeed b (1) % + by(t) e(t) (G-58)
dt dt

where the a,(t) and b;(t) are continuous single-valued functions of t, possesses (n) linearly
independent solutions. If these soluticns are ¢.(t), ¢é,(t), ..., ¢ (t), then the general solution
ry(t) is given by

rp(t) = c31(t) + cadp(t) + 27 + e P (t) (G-59)

where the c¢; are constants. The simplicity of (G-59) indicates it may often be of practical

importance to know whether a given set of functions is linearly independent. The necessary
and sufficient condition that a given set of homogeneous solutions ¢,(t), ¢; t), ..., ¢ (t) be
linearly independent is that the determinant

¢1 ¢2 ¢n
¢ ¢ - 4
W o= | ¢ ¢ ce. en $ 0. (G-60)
n- - n-1
PR S IR

This is called the Wronskian determinant.

Differential equations of many elements involving time-varying parameters may be solved
by direct methods. An example of this are first-order linear equations of the following forin,

S’.E% + a(t) s r(t) = c(t) (G-61)

d

where a(t) and ¢(t) are independent functions of time. If the dependeunt variable r(t) has
the initial value,

r(0) = 0 (G-62)
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the general solution of (G-61) is

t
r(.) = exp [- Ja(t) dtjl . I exp [a(t) dt] e(t) dt (G-63)
0

using the method of substitutions. Other methods, such as the variation of parameters and
those employing differential operators are available.

The physical problem may permit approximations to be obtained readily with sufficient
accuracy for practical use. A very useful one is the B.W.K. approximation, used with time-
varying elements having parameters which exhibit only small variations about a large average
value, and a differential equation of the form:

2
450 4 2% (1) = e(t) . (G-64)
dt

2
If a'(t) is a real positive function and satisfies the condition given, a useful approximation to
the general solution ry(t) is

g(t) = —al—t)— (A cos [a)] + B sin [a(v)]) (G-65)

vhere A and B are arbitrary constants, and q(t) is given by
q(t) = fa(t)dt . (G-66)

1t is particularly good if the variations of a(t) are such that

az( t)| >>

a'(t) _ 3 (a' ()] (G-67)
2a(t) 4\ a(t)

in the range of (t) under consideration. Other approximations exist, depending on the type of
elements involved and the temporal range of their parameters.

TRANSFER FUNCTION

It was shown in section (G-3) that a linear time-invariant element can be usefully charac-
terized through knowledge of its transfer function H(j). Transfer functions can be similariy
applied to linear time-varying elements. Since they are functions of both time and frequency,
they are designated by H(jw; t).

By introducing the Heaviside operator p = d/dt , the problem of characterizing the ele-

ment, that is, the solving of the differential equation (G-58), may be simplified to determining
the ratio of input to output, H(p; t),

m m-1
b (t)p + by(t)p + ¢+ b (t)
B vy = KD . T L e | (G-68)
S(t)  a(t)p + ay(t)p oo a(t)

The transfer function H(jw; t) of a time-varying element N is defined as

. jwt
H(jw:t) = response ofi N to e . (G-69)

jwt
e

Thus, when the input is e'“*, (G-68) becomes
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m m-1
r(t)] bo(t)(jw) + by(t)(jw) — + -t + b (t) =
) = . {(G-70)

n-1
c(ymet® (D) F a0+ e my(0)

The time-varying frequency-response function H(j«;t) constitutes a natural generalization of
H(jw). I the element is initially at rest and the Fourier transform of the input c(t) is denoted
by C(jw) the expression for the output at time t, r(t), in terms of H(jw; t) and C(jw) is

r(t) = 3—,7 SH(jw:t) Cliwy &' dw. (G-71)

Figure (G-10) compares fixed and variable elements for 2 sinusoidal input.

TIME
INVARIANT | —a —W_
H{jw)
/ Re E-q( jaig) Aeiwo'-]
VAVAVA N

Re [Ae j“”t]

TIME
VARIANT
H{jwst)

Re [H(jwo;t)Aemt]

Figure G-10 - Comparison of time-invariant and
time-variant elements for a sinusoidal input

When the spectrum varies with time, more weight must be given to values ot the time-
function occurring at certain times than at others. This implies a type of modulation. In gen-
eral, functions with time-varying spectra may be analyzed by considering two types of varia-
tions, one of which involves rapid fluctuations of the functions, the other, slow changes.

IMPULSE RESPONSE

A tinr e-dependent transfer function can be associated with a time function which has some
characteristic of it varying with time, indicative of the behavior of the element. This is the
impulse response of the network and its use retains the advantages discussed previously for
time-invariant elements.

If the input c(t) is the impulse function 8(t - T), then the output r(t) is denoted as
h(t; T) and is called the impulse response of the element,

h(t; T) = H(p; t) S(t-T). (G-72)
As for a fixed network, the impulse response and transfer function are conjugate Fourier
transforms. The Fourier transform of (G-72) with respect to T, ccnsidering t as a parame-

ter, is

Fln(t; )} = H(-ja; t)e i°%. (G-73)

Taking the inverse Fourier transform and replacing « by -,




h(t;: T) = 2—17,-j Hejw;ty e 0T da (G-174)

- @

Transforming both sides of (G-74) with respect to T,
H(jws t) et = j h(t; T)e"“TdT. (G-15)
-

Equations (G-74) and (G-75) establish the conjugate behavior of h(t; T) and H(jeo; T). Since
H(jw; t) can describe a network completely and is related to h(t; T) by (G-175), then h(t; T)
also completely describes the network.

In general, the output r(t) is related to the input c(t) through the impulse response, i.e.,
©
r(t) = jh(t; T) (T)dT. (G-16)
-
For a physically realizable network, h(t; T) = 0 for T > t, and c(t) = 0 for T < 0. (G-176)

then reduces to

t

r(t) = j h(t; T) ¢(T)dT (G-17)

0

and is referred to as the convolution integral.

GREEN's FUNCTION

A method which is useful in describing time-varying elements involves the use of Green's
function. Green's function is used to characterize the network's impulse response and the
differential equation which describes its behavior. (G-58) may be written as

Lr(t) = y(t) (G-78)

where L is the linear differential operator

n n-1
L= agt) S+ ayt) S+t ag(e) (G-79)
de dt
and y(t, is a known function of the input, namely
de(t) a" et
y(6) = bty T 4 b0 SEE ek by e (G-80)
dt dt
Subject to the boundary conditions
0y = o for a=0,1, ..., n=1 (G-81)

the solution of the differential cquation (G-78) becomes

(G-82)

¢
r(t) = ,‘l‘ G(t; x) y(x)dx
0
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where Gy(t; x) is the one-sicded Green's function. The latter is defined as

éy(t) Fa(t) cee Pa(t)
$y(x) Po(x)
Gty -'
G,(tix) = m‘)‘ #1(%) Pa(%) (G-83)
7000 KV NP
where W(x) is the Wronskian of the linearly independent solutions {qbl( t). Pa(t), - oo ¢n(t)}

of Lr(t) = 0. Since the upper limit in (G-82) 1s variable, the integral equation is of the
Volterra type.

If N is the linear differential operator

N = by(typ™ + by(t)p™  + e by(t) (G-84)
then
Ne(t) = y(t) (G—85)
and (G-82) becomes
r(t) = j G,(t; x) Ne(x) dx. (G-86)
V]

Thus, Green's function completely characterizes the network for a given input, the output being
uniquely determined. Equations (G-82) and (G-86) are similar in form to (G-77). For N= 1,
the relation between the impulsive response and the one-sided Green’'s function of a linear net-
work is

Mt;T) = G £>T
. (G-8T7)
=0 t<T

If N cannot be expressed as (G-84), then G, is not the same as h.

The advantage of Green's function in investigating linear systems is ascribed to the func-
tion's properties and the ease with which physical interpretations may be made. Some of the
properties are:

'aa
(a) ﬁ;Gl(t,x) t-x= 0 for a=0,1,..., n-2
n-1
., 9 1
() —mi Gu(ti ® =
2" 171 emx b (x)

(¢) L, Gy(tix) = 0
(d) G,(t: x) is unique

(e) Given G,(t; x), a set of solutions of Lr(t) = 0 canbe determined explicitly.

[L, implies that the differential operator L operates on functions of t A
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For the general boundary conditions of the form
= -1 e A-1
Uury = D AggrP ey e ) Bopr " Vby = 0 a=1,2 ..., n (G-88)
B=1 B=1

where a and b are two distinct time instants, b > a, the solution of (G-78) is
b
r(t) = j Go(t; x) y(x)dx (G-89)

where G,(t; x) is the two-sided Green's function. Since both limits are fixed, (G-89) is a
Fredholm integral equation.

From section F-4, the Volterra and Fredholm integral equations can be reduced to algebraic
form through the use of integral transforms, the Laplace and Mellin transforms, respectively.
Thus, integral transforms can be considerably useful in solving problems concerning time-
varying elements.

INTEGRAL TRANSFORMS

The use of integral transforms to solve differential equations of specific time-varying
elements has already been discussed in section F-4. To review briefly, the application of an
integral transformation method to linear networks i3 based upen first resolving the solutions
of the differential equations into an integration (cr summation) of elementary functions k(t; s)
where (s) may be considered a complex parameter.

For fixed, that is, invariant, elements, resolving the solution r(t) consists essentially in
expressing it in the following form

r(t) = Ik(t: s)R(s)ds (G-90)

c
where C is the contour in the s-plane (generally a straight line parallel to either the imagi-
nary or real axis) and R(s)ds is a weighting factor which provides a measure of the content in
r(t) of those components k(t; s) in which the parameter lies between s and s + ds. R(s) is

called the spectral function of r(t) relative to k(t; s). Due to the linear nature of (G-90), the
expression for R(s) in terms of r(t) is of the general form

R(s) = g K(s; t) r(t)dt (G-91)

where K(s; t) denotes the inverse of k{t; s). To complete the uniqueness of a spectral descrip-
tion, the desired rel.tion between k(t; s) and iis inverse is

gk(t; s) K(s; §)ds = 8(t-¢&) (G-92)
c

where 5(t-¢) is the delayed unit impulse.

For time-varying elements, (G-91) may be modified as

t
R(s; t) = S K(s; N) r(A)dX. (G-93)

This is a time-variable transform which maps a function in the time or t-domain into a gen-
eralized s; t domain, where t behaves like a parameter. Thus, (G-93) is a ""running
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transfor:m," similar to that used to describe the instantaneous power spectra (B-16) for vari-
oug waveforms having time-varying spectra. The relation between the elementary function and
its inverse is as defined by (G-92). The inverse transform is then

1(t) = Ik(t: s) R(s; t)ds. (G-94)

c

The set of functions k(t; s) constitutes a coordinate system in some vector space. Transfor-
mation from r(t) to R(s; t) impiies a decomposition of r(t) along the axis of the coordinate

system which is dependent of time.

The time-variable transform wili inherently contain the properties of the single~-variable
transform. However, since it involves an integral over finite limits, it has additional proper-
ties. A theorem resembling Parseval's may be applied when K(s; t) is described over the con-
tour C by

K(s; t) = f(t)k*(t; s) (G-95)

where f(t) is a function of t for all s cver C and the asterisk denotes the complex conjugate.
If r(¢) is bounded for 0 < ¢ < t the theorem then states, that:

t
SIR(s: ol ds = j £°(6) £ 2(6) d€. (G-96)
o

C

Other integral transforms exist for the solution of physical problems. The type of trans-
formation performed — specifically, the kernel function used — dcpends on the linear system
and associated initial conditions. A method cf developing transforms for any linear system is
to introduce boundary conditions in the way that the Laplace transform does. As an example,
consider the following differential equation describing a time-varying element

a(t) r*(t) + b(tyr'(t) + d?r(t) = o(t) (G-97)

where a(t) and b(%) are functions of time and d2 is a constant. It is desired to reduce this
to an algebraic equation in the transform domain, such as

q(s) R(s) + dzR(s) = C(s) + [terms involving initial conditions]. (G-98)
when the integral transformation of the form

R(s) = j K(s; t) r(t) dt
0

(G-99)

is applied, with q(s) being an arbitrary function of the transform variable.

The kernel, K(s; t), is obtained by applying (G-99) to (G-97) and integrating by parts. If a
function of time g(t) is included in the kernel to make the linear differential operator of (G-97)
self-adjoint, the kernel becomes

K(s; t) = g(t) i(s; 1) (G-100)
where g(t) is given by
b - L}
gt) = exp HL)B“—;'—“—) dt] (G-101)

For these conditions, £(s; t) must satisfy

a(t) Lo (sit) + b(t) L(sit) - a(s) is;t) = O (G-102)
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where £, and f,, refer to the first and second derivative with respect to time, respectively.
(G-102) shows that the appropriate transform depends on a knowledge of the solution of the
homogeneous form of the system equation (G-97).

The transform method is most useful when the system under consideration is subjected to
various excitations. It is important to ncte tha! the philosophical difference betw:en the finite
upper limit of (G-93) and the infinite upper limit of (G-99) is that the former proi ces a trans-
form which varies with time, its value at any one instant being independent of future values of
the response. The latter produces a transform, such as the Laplace and Mellin transforms,
which depends on the entire history of the waveform.

RANDOMLY-VARYING ELEMENTS

Up to this stage, only deterministic time-varying elements have been discussed. They
have been represented by differential equations with variable coefficients whose values may be
predicted with probability one at future instants of time. Their descriptions are special cases
of a more general approach which ccnsiders statistical characteristics.

Randomly-varying elements, those whose parameters vary randomly with time, are becom-
ing of increasing importance and their analysis permits a more general classification of ele-
ments. Consider a nonrandom input <{t) applied to a randomly-varying element whose behav-
ior may be expressed by

a (t) d_r(nt) + o4 a r(t) = c(t). (G-103)
dt
If a,(t) varies as
a;(t) = a;(t) + €;(t) (G-104)

with a,(t) being the expected value of £;(t) and e;(t) is small compared with a;(t), then
(G-103‘) can be solved by perturbation techniques, with r(t) being the sumof a nonrandom
term and a random term ascribed to e(t).

If characterization by a differential equation is impractical, correlation and spectral anal-
ysis may be used. Similar to the treatment applied to descriptions of random waveforms, it is
convenient to assume stationarity in analysis. Let [u(t)] and [v(t)] represent two independ-
ent stationary processes which, when applied separately to a randomly-varying element, result
in processes having autocorrelation functions y,(7) and y (1), respectively. It is assumed the
inputs are independent of the random processes governing the bebavior of the element. If by
applying process [au(t) + Av(t)] to the input, where o and S are arbitrary real constants, a
random process is produced whose correlation function \/"auwv(T) is given by:

Vaurge(T) = @ 0T + BT Uy (T) (G-105)
for all a,B,lu]l and [v], then the element is said to be linear. Linearity, here, implies the
superposition property for correlation functions. Any stationary lirear element will have this
property. (G-105) can be used as a basis for determining whether an element is linear by
observing the input and output over periods of time sufficiently long to enable obtaining accu-
rate estimates uf the correlation functions involved in (G-105).

The correlation function of a stationary randomly-varying element is defined as

Wjws T) = E{[H(jw; t) H(-jw; t+T)]} (G-106)

where H(jw;t) is the time-dependent transfer function given by (G-70) together with (G-58).
For each real o, [H( jws t)] ig a stationary random process. If the input is a stationary random
process [c(t)], independent of [H(jw; t)] , then the correlation function of the output process

[r(t)] is




|
|

@

b = e | wiwi ) Flpan} e’ dw (G-107)

-

where ?{wc(-r)} is the Fourier transform of the input correlation function, yc(7). This rela-
tion is of the same form as that expressing the output of a time-varying network with transier
function y(je; 7) , with the input being ¥.(7). This can be seen by comparing (G-107) with

(G-71).

13. CONCLUSION

A number of methods have been reviewed, interrelating various descriptions of linear
elements. An attempt has been made to stress the basic similarities of these methods with
techniques previously discussed for representing structural detail of functions. Functions
discussed earlier included periodic, transient, and random processes which were indicated as
being of importance {or represerting temporal or spatial structure. The basic philosophy
invoived the concept that the major purposes of representing and transfcrming structure are
as simplification and matching operations. The choice of a particular method is conseyuently
dependent not only on the nature of the function but also on the use which is to be made of the
representation. Typical uses with which the discussions were concerned i1qcluded improving
visualization, understanding, and computation, and facilitating physical reali .ation. Since sim-
plitication is a highly subjective concept, it is necessary to include additionally, for most
applications, quantitative measures of "completeness."” Characteristics of the integral-square
error as a criterion were discussed together with the use of Fourier transform and related
methods applied to time-invariant structures. Sampling, and correlation and spectral analy-
sis were outlined, along with additional descriptions which were required particularly when
boundary conditions were imposed simultaneously in conjugate domains.

Analogous relationships were seen to occur when the representations of linear circuit
elements were reviewed. Just as the representations of functions were characterized by a
wide range of methods and techniques, the analysis of physical elements may also be made in
terms of differential-integral equations, transfer functions, and impulse response. These
methods may be extended to include time-varying structures. Perhaps the most important
single concept is that the number and type of structural components to be used — (whether the
problem involves "signals," elements, or the relationships between signals and elements) —
are not to be regarded as intrinsic properties, but as convenient reference elements which are
dependent on the mode of representation and the nature of the problem.
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H. LINEAR ANALYSIS OF SPATIAL ELEMENTS

1. INTRODUCTION

A number of analogies exist between circuit and spatial elements when linear analysis is
applicable in describing behavior of elements. It is important to recognize, howevcer, that the
"analogy' may consist solely of a common mathematical formulation, and that the full utility of
analogues can only be established by considering the physical nature of the elements’ excitation,
the environment in which it is to function, and the use which is to be made of the descriptions.
Descriptions and their transformations assume practical importance when they serve to portray
concisely and completely element behavior and reduce some of the difficulties associated with
improved understanding, computing or physical realization. Development of analogies is impor-
tant since design details and computations made in one area may be used in other areas pro-
vided that correct analysis of the physical process hae been made. In addition to analytical
and physical analogues which exist between circuit and spatial elements, properties of acous-
tical radiation resemble electromagnetic fields, and as a result characteristics such as the
directivity patterns of acoustical transducers may be derived from microwave antenna or opti-
cal element configurations, and in some cases acoustical structures may be used for electro-
magnetic problems. When structural detail of the radiated field is of primary concern, it is
convenient to confine the analysis to transmitting sources since directivity patterns are iden-
tical for transmission and reception when linear, reciprocal elements are involved.

Methods for describing basic properties of spatial elements may use space, or space-
frequency as variaoles. The freedom of selection corresponds to the choice of time or {re-
quency in circuit problems. Similarly, correlation and spectral analyses, and statistical
methods may be employed. As was indicated in earlier discussions, the use ot statistical
methods may be required in order to reduce dimensionality, or may be required because the
only available information is statistical in nature, and in many problems combinations of
deterministic and probabilistic descriptions are required.

2. LINEAR SUPERPOSITION

A spatial element is said to be linear if it obeys the law of linear superposition. The prac-
tical result is tha! the directive properties of a spatial element such as an acoustic line trans-
ducer may be determined by examining the behavior of a number of discrete receiving points
spaced along the line. In the case of longitudinal waves such as sound, a point source would
consist of a sphere which is small in comparison with the wavelength emitted so as to radiate
a spherical wave. Surfaces of constant amplitude are spheres concentric with the source. For
electromagnetic waves which are transvers<s, the electric field, tue magnetic field, and the
direction of propagation are perpendicular to each other. A point source is represented by a
dipole which may be considered to be a short wire carrying the current, with the length of the
wire being small in comparison with the wavelength. An expression may be derived for the
response of a single point source. The amplitude and phase of this response are expressed as
functions of the position of the element with respect to a transmitting point. The total response
is obtained by combining the elementary responses for the spatial device through an integration
which relates the spatial configuration and hence, will be a function of the dimensions and
bearing of the incident radiation.

Figure (H-1) shows a comparison of the directivity patterns of a discrete linear array
having elements spaced at intervals of A/2 and a continuous, uniform linear transducer. Each
have a total length of 5A and the relative acoustic pressure is specified by the ratio of the
voltage developed by the acoustic energy of given intensity, at a given bearing, to that developed
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Figure H-1 - A comparison of the directivity
patterns of (A} a discrete linear array having
clements spaced at half wave lengths and (B) a
continuous, uniform line transducer

by the acoustic energy of the same intensity arriving along the axis normal to the array. A
line transducer is equivalent to a discrete array having an irfinite number of elements. It is
seen that there is little improvement in directionality to warrant providing a discrete array
with more elements than are sufficient to give a half-wave spacing. The height of the sec-
oudary lobes may be slightly increased but the width oi the major lobe is practically unchanged.

When the responses of discrete receiving elements are known, the response of an arbitrary
configuration can be derived by using the pi1inciple of pattern multiplication. The radiation
pattern of an array of spatial elements, each of which has the same pattern with the same
orientation in space, may be found by (1) replacing each of the elements by an omnidirectional
element at the same point and with the same amplitude and phase of excitaticn, (2) determining
the array pattern of the resulting array of omnidirectional elements, and (3) multiplying the
array pattern by the radiation pattern of the individual elemenis of the original array.

A linear array of N equally-spaced elements has N degrees of freedom since it is possi-
ble to establish N coefficients of the Fourjer series for the total far-zone pattern. As a result,
N linearly i .dependent aperture distributions are available, and consequently, N points may be
assigned to the radiation pattern. In the general case, where the elements are arbitrarily dis-
tributed, each element will have an added degree of freedom, namely, its position along the axis
of the array. Therefore, the array with arbitrarily distributed elements needs, in general,
fewer elements. This is analogous to nonuniforin temporal sampling of a signal.

3. POINT SOURCE RESPONSE; CONVOLUTION THEOREM

The analogy to the impulse response in the time domain is the response of a spatial ele-
ment to a po.nt source. Such a source radiates uniforinly in all directions and is the building
block needed for linear superposition.

In two dimension if h(x,y) is the point source response, then subject to linear superposi-
tion, the total response r(x,y) for an extended source distribution s(u,v) is given by
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r(x,y) = J‘ J‘h(x—u, y = v) s(u,v)dudv (H'l)

where (x,y) and | :,v) are the spatial coordinates for the output of the spatial element and the
source, respectiveiy. Hence, analogous to a temporal system, the output of a spatial element
is the convolution of its point source response and input. This is the spatial convolution theo-
rem. Although Eq. (H-1) can be readily formulated, it cannot always be integrated in closed
form and either numerical analysis or transfer function descriptions may be required.

The directional discrimination of a receiver depends on the response to sources outside

the major lobe. Boundaries imposed on spatial extent produce sidelobes in the response and
affect the interpretation of the various spatial descriptions. For example, a limitation to per-
fect transmission in a coherent system is the reciprocal relationship between the wavelength
of the radiation and the spacing between detail in the object {or source). This indicates that
infor mation cannot be transmitted in closer detail than the wavelength of the incident radiation.

The plane wave response pattern of a receiving antenna is obtained when the radiator is a

point source at a sufficient distance such that an increase in the distance will produce no

detectable change in the pattern. If the source subtends an appreciable angle, the response
pattern will be modified. This is shown in Figure (H-2) where the pattern of a receiving antenna
is compared to the pattern observed when the point source is replaced by an extended source,

at the same distance.

POINT SOURCE EXTENDED SOURCE (UNIFORM)

/ 4

TRUE ANTENNA DBSERVED PATTERN
PATTERN -~
RECEIVING ANTENNA RECEIVING ANTEMNZ
(a] (b}

Figure H-2 - Antenna pattern for (a) a point source and
(b) an extended source

The effect of the source distribution on the observed power pattern G(¢,) may be given as

G(¢) = %jwm ®o) () do (H-2)

where

G(¢,) = observed or resultant pattern,
F(¢+¢,) = true anterna pattern (as measured with a point source),

A = [ f(¢) dp = effective angle subtended by source (total power flux of source),

f(¢) = source distribution.
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All patterns in the above equation are proportional to power and are shown in Figure (H-3)
where the main lobe of the antenna is displaced from the center line of the source by an angle
#, and the over-all source extent is 2a. For a point source, the source pattern in Figure (H-3)
reduces to an impulse at ¢ = 0 (a = 0) and G(#) = F(¢). Thus, for a point source, the chserved
pattern is identical with the true pattern.

Figure (H-4) illustrates the case of an extended source that is much broader than the
antenna pattern, aid with the source being represented by a step function equal to unity between
+a and -a and zero elsewhere. In the range of ¢, between a- 8 and -(a- 8) the observed
distribution is constant but reduced by a factor B/A where (B) is the area undexr the antenna
pattern and (A) is the area under the source paiiern.

In general, the pattern F(¢+e,) and the observed pattern G(9¢,) are known while the source
distribution f(¢) is unknown. The latter can be determined by assuming various source dis-
tributions and calculating the corresponding distributions, G(¢,). If the calculated G(¢,) dis-
tribution agrees with the actual observed distribution, then the assumed source distribution
f(®) represents the true source distribution or its equivalent. A more direct method is to
expand the distributions into Fourier series and relate the corresponding coefficients as dic-

tated by Eq. (H-2).

? M-,
Flg + .0, TRUE f(®), SOURCE PATTERN
= ANTERNA PATTESN \’/-
bl
T
=
-
o
e
2 Y
= o +a
B(,). OBSERVED PATTERM
B i)
Figure H-3 - Antenna pattern, source pattern,
and resultant or observed pattern
4 3
f(®), SOURCE PATTERN

F(), ANTENNA PATTERN

i /
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W 6(®,), O0BSERVED
= / PATTERN
-
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0 e t ok » Porp
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Figure H-4 - Case of source pattern that is
much wider than antenna beamwidth
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4. TRANSFER FUNCTION

From the properties of Fourier transforms, the space-frequency spectrum of an aperture
distribution modified by any number of successive linear operations is the product of the space-
frequency spectrum of the original distribution, and the spatial spectra of the several linear
operations. Therefore, an analysis performed in the space-frequency domain replaces suc-
cessive integrations by successive multiplications. The space-frequency spectrum of the
response of a spatial element may be expressed as

R = (5) (W)
response source transfer function (H-3)
spatial spatial of spatial element -
spectrum spectrum

H is the Fourier transform of the point source response whose coordinates are spatial fre-
quencies having dimensions of reciprocal length. For an r.-dimensional distribution this is
written as

@ «©
j2m(xysyt.. . tx 8)
H(sy, 59, .0.,5,) = J h(xX},Xg, ..., % )e T " dxg. . dx, (H-4)
- © a
n- fold
where s; = - sin 6,/\. The space transfer function completely characterizes a spatial ele-

ment. Itis primari’ly a steady-state or far-field description and, . as indicated above, is often
more convenient to work with than the point source response.

5. TRANSFER FUNCTION METHOD

The general problem of deter mining the response of a spatial element requires knowledge
of the degree of coherence of the excitation. The extreme cases of completely coherent and
incoherenfi elements are readily represented; however, partial coherence characterizes real
elements.

An incoherent element is linear on the basis of cnergy, permitting the use of Fourier
analysis only if it is made on an energy basis. Incoherent elements behave as low-pass filters
since they deal with the addition of nonnegative intensity variations. The inherent flexibility
associated with spatial-frequency operations is lost when incoherent elements comprise the
system. A coherent element is linear in amplitude and phase. The Fourier components that
make up the response may be controlled by using the proper weighting with the element. In
reception, a coherent elemeut benaves as an amplitude-phase detector whereas an incoherent
el‘ement is basically an envelope detector.

Analogous to circuit elements, the transfer function of a spatial element can be deter-
mired from its response to plane wave random noise. Using the concept of the space correla-
tion function developed in section E, the correlation function at the output of a spatial element
may be obtained by convoluting the correlation function of the elements impulse response with
the space correlation function of the input, and integrating the result over the entire volume
occupied by the eleraent. If the input is plane wave "white' random noise, its correlation func-
tion will be an impuise. This greatly simplifies the integration, and by applying the Wiener-
Khintchine theorem, results in the output power spectrum being proportional to the square of
the absolute magnitide of the spatial transfer function. Spatial elements having random inputs
can be considered to be incoherent.




6. SPACE-FREQUENCY EQUIVALENCE

When a Fourier relationship exists between the radiation pattern and the amplitude dis-
tribution across the aperture, the reciprocal relationship between aperture and pattern widths
is displayed by similarity of the radiation patterns for isofrequency receivers of large spatial
extent and wide-band receivers of small extent. The equivalence existing in a receiving array
between its spatial configuration and the frequency configuration of the source is illustrated in
Figure (H-5). As the spatial configuration is varied to improve the directionality, in the fre-
quency case this corresponds to using a source having wide-band signals. If a continuous,
uniferm array is replaced by point sources spaced at one half wavelength intervals, then the
continuous frequency distribution of the sourceswill be replaced by a set of discrete frequencies.

When the element spacing (or frequency spacing) is made large, multiple major lobes result.

VARIOUS SPACE COMPLEXITIES OPERA - A 2-EL EMENT CORRELATION ARRAY OPERATING
TING AGAINST A SINGLE FREQUENCY AGAINST A SOURCE HAVING VARIOUS
SOURCE IFREQUENCY COMPLEXITIES
SPATIAL FREQUENCY BEAM JRAT TERN SPATIAL FREQUENCY
CONFIGURATION CONFIGURATION CONFIGURATION CONFtGURATION

CONTINUOUS BAND
| OF FREQUENCIES
i

© © ]L\‘\_\_

FULL DIRECTIONAL
RADIATOR

—

DISCRETE FREQ.

L 1]
DISCRETE RADIATORS — CLOSELY SPACED
SPACED A/2 APART
|

© 9 0o ¥ o O |

z pISCRETE Frea W
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Figure H-5 - Equivalence between the complexity of the receiving array
and the complexity of the frequency configuration of the source

7. LINEAR ELEMENT APPROXIMATION

INTRODUCTION

To approximate a spatial element means to approximate its point source response (or spa-
tial transfer function) by a sum of predetermined responses, properly weighted and constrained.
This, similar to circuit elements, may imply specifying the phase shift in a particular direc-
tion, or the plane wave response at broadside, or normalizing the integral square value of the
point source response over a given spatial coordinate system:.

To synthesize a spatial element which will have a specified directional characteristic, it
is often convenient to deal in terms of line sources. The idealized concept of a true line
source is useful for studying the directional characteristics of many physically realizable
transducers. Equivalent line source concept facilitates evaluation of the directivity pattern in
a single piane of more complicated transducers. For example, a cylindrical source with a
radius less than 1/6 wavelength is closely approximated by a line source and its directivity
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paitern may be synthesized by means of line-source theory. Another case of practical interest
is the plane-surface radiator where the directivity pattern in a single plane may be obtained by
considering an equivalent line source.

Various methods for synthesizing line sources to obtain specified directivity patterns will
be discussed. An examination will be made of the effects of finite aperture width and of ampli-
tude and phase errors on the radiation pattern. In the discrete case, that is, a linear multi-
element array, there is the additional consideration of departure from uniform spacing. These
facets of the synthesis problem, including use of integral transforms and additional descrip-
tions ior evaluating the performance of spatial elements, are also included in the discussion.

TRUE RADIATION PATTERN

Before the true radiation pattern is considered in terms of the synthesis problem, addi-
tional insight will be obtained by reviewing the highlights of its derivaticn. In the transmission
of acoustic waves, there is no rotational motion of the particles so that the velocity vector of a
particle is an irrotational vector. If u,v,w are the velocities in the x,y,z directions, respec-
tively, the velocity vector ¥ may be represented as the gradient of some scalar potential func-
tion ¥, i.e.,

Y= vy (H-5)
where ¥ is termed the velocity potential. Equation (H-5) may also be written as

o¥(x,y,z,t)
9x

M(x,y,z, t) -
Ty L

AM¥(x,y, z,t)
oz J

The velocity potential, in one-dimension, at a point M due to a harmonic point source of
strengih ¢ at a distance r is given by

- j(wt-kr}
aw = 4nr © (H-7)
where
w/k = ¢ = velocity of propagation through medium,

k = 2n/A = the wave number whici plays the same role in space coordinates as « does in
time coordinates,

wavelength which measures the length of one cycle in space just as the period
T measures one cycle in time.

>
]

The source strength ®{y) is the distribution of strength along the source, where it is assumed
to be finite and continuous and has a finite number of finite discontinuities. Outside the interval
of source dimensions, %(y) is assumed to be zero, and from Egs. (H-6) and (H-7), has the
dimensions of velocity-volume per unit length. It will be assumacd that the time variation of

the source-sirength corresponds to the single angular frequency w.

Consider a source of length (a) in the coordinate system of Figure (H-6). The sound
pressure at the point M, p(M), is given by -po(0%/3t) where p is the density of the medium,
and the total pressure at point M is found by integrating along the line of the source:
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a1 a/2

. ) -jkr
| " p(M)y = - L2 gt ?1(1—)—;'?—— dy. (H-8}

i
./

This equation holds for any point in space and is correct
for any source-strength distribution for which the inte-
gral is convergent.
| Pl S S A S S S S A P ;4‘_- |
| °|-—; —= o A requirement necessary for restricting point M to
the Fraunhoffer diffraction region of the pressure dis-
|"_ i . tribution is that the path difference between contributions
Figure H-6 - Coordinate system

from the center and the end of the source be small com-
pared to a wavelength. This may be expressed as

for directivity pattern of a line 2

source R >> ;— . (H-9)

The accustic pressures and particle displacements will then have common phases and ampli-
tudes at all points on any plane perpendicular to the direction of wave propagation. Using Eq.
(H-9), Eq. (H-8) becomes

. a/2
Jwp ei(wt-kR)

PNy = - e ejky siné

()
-8/2

dy. (H-10)

Normalizing with respect to broadside (6=0), the normalized directivity pattern, G(6),
becomes

a/2

: ing
j ‘l’(y)eJky"n dy
-s/2

_ p(9) =
G(6) = YO — (H-11)
[ o ay
-8/2
If a normalized source strength distribution F(y) is defined as
Fy) = —22)
o(y) dy (H-12)
-8/2
then Eq. (H-11) may be written as
2/2
6(6) = j Ry el "0 gy, (H-13)
-8/2

This is the standard equation for ohtaining the directional response of a line source as a func-
tion of angle. Since k = 2w/A, if s = - sin 6/A, Eq. (H-13) becomes

s/ 2
G(s) = j F(y)e 'V ay. (H-14)
-a/3

This is identical to Eq. (E-2) except for the finite limits of integration and states that in the
far field, the normalized directivity pattern G(9) is the finite Fourier transform of{ the rela-
tive source strength distribution F(y). Sources with the same ratic of length to wavelength and
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with the same F(y) will have the same directivity pattern. F(y) is the normalized volume-
velocity distribution per unit length across the aperture.

If we wish to have a pattern description independent of s/, and vary with 6 only, define

z = ; sin §. (H-15)
Then Eq. (H-13) becomes,
s/ 2 y
j2m gz
g(z) = J. F(y) e dy . (H-16)
-a/2

Let y/a = x/2, then dy = (a/2)dx and Eq. (H-16) may be expressed as

g(z) = 5 3P () e ax. (H-17)

equals a new function of x, say f(x), then we have,

1
g2 = g £oxy el ax, (H-18)

which is referred to as the true radiation pattern or "pattern function." The function :!({x) is
termed the "excitation function” of the source. Note that (y/a) was chosen equal to (x/2) and
not (x) as might be expected, so that the limits in Eq. (H-18), the range of integration, is

{(-1 <x <1) and not (~-1/2 < x < 1/2). This corresponds to the angular interval (-n/2 < 6 < 7/2)
which provides the ''accessible’ portion of the pattern function. It is so iermed since it is the
only portion of g(z) that corresponds to a physically measurable value of the normalized sound
pressure (the g(z) is a single~valued nonperiodic function of z). Though z > |a/A| is possible,
it corresponds to the "inaccessible' portion of the pattern and has significance for superdirec-
tive sources, that is, sources whose main beam is narrower than that from a source of the
same length having uniform excitation.

Often, in trying to synthesize sources to obtain extremely narrow-beam directivity pat-
terns, large minor lobes may occur in the iraccessible portion of the pattern. This is caused
by large amplitude terms in the expansion of the excitation function f(x) describing the source.
Theory has shown that there is no upper limit to the gain of a radiator provided no limit is
placed on the amplitude of the continuous excitation function or its derivatives.

An analysis in z-space is very convenient since two patterns generated by sources of dif-
ferent length but with the same excitation function are represented by the same furction extend-
ing over different intervals. It should be remembered, however, that in the real physical
domain, which may be characterized as 6-space, the two patterns appear as different functions
over the same angular interval.

METHODS OF SYNTHESIS

The problem of synthesis is one of finding how to specify pattern functions with desirable
properties in the accessible region and which can be achieved by practical excitation functions.
There are two techniques which may be usefully applied to this problem and which result in
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approximate solutions. The first is a series expansion method whose accuracy depends on the
number of terms considered. The second is based on the Fourier integral transform where
the degree of approximation depends on the range of integration.

If we expand both g(z) and f(x) in a finite series of weighted elementary functions, i.e.,

g(2) = F a, ¢u(2) (H-19a)

£(x) ; b, Ag(x) (H-19b)

and require that the corresponding coefficients be equal for every value of the discrete vari-
able n(a, = b_), then substituting Eqs. (H-19a) and (H-19b) in Eq. (H-18) leads to the condition
that

1
zx

o) = jxnme"" dx . (H-20)

-1

The utility of functions satisfying Eq. (H-20) depends on whether the coefficients may be deter-
mined conveniently.

One possible technique is to form an orthonormal set of functions out of a known set of
¢.'s. I g(z) is expanded as a finite sum of these functions, this will be the best approximation
in the least squares sense. Thi. is a desirable apprcximation if one is interested in maximiz-
ing the directivity factor of the source and can be the basis of synthesizing for maximizing the
directional gain of a source. The v,'s themselves were not made orthogonal because it could
not be assumed that any particular set of functions [t,bn(z)] will simultaneously satisfy the
conditions of orthogonality and Eq. (H-20) for all values of a/A.

Approximating in the least square sense is seen to be appropriate if it is desired to pro-
duce a specified signal on the principal axis with minimum energy in the sidelobes. This may
be attribuied to the finite Fourier series representation being the best approximation on the
basis of energy. There are other criterion which may be used. For example, if one is inter-
ested in having minor lobes of low amplitude, approximation in the Tchebycheff sense may be
more desirable. This permits distinguishing a weak source located on the principal axis from
stronger sources located off the axis, and states that for a given number of sidelobes, the
maximum value of a minor lobe may be made smallest if all lobes are of equal amplituce.

There are basically three sets of complementary functions which satisfy Eq. (H-20) and
may be useful expansions of the pattern and excitation functions. One is where f(x) is
expanded in a Fourier series, while the other two provide power series or polynomial expan-
sions of the excitation function.

If

then for a general type of line source, the pattern and excitation functions can be expanded in
saeries of the form

©
U

@) = ) a, 22D (H-21)
and
f(x) = Z ET"ej""". (H-22)

ne- o
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Equation (H-22} is recognized as the complex form of the Fourier series and infers that a con-
tinuous phase shift of the form e!"™"* is applied to a uniformly excited line source. This, in
effect, steers the main beam so that it is centered on the value z - -n rather thanon z = 0.
The complete pattern is a superposition of sin z/z beams steered toward different directions
in z-space. If n is 2llowed to exceed a/ix, the main portion of the rith beam will be steered
into the inaccessible region of the pattern and oniy the "sidelobes” will contribute to g(z)
within the accessible region.

For an f(x) that is finite and continuous over the full length of the source, its partial-sum
expansion in terms of the A's should converge in-the-mean. Then a realizable pattern func-
tion may be expanded in the corresponding set of y 's.

Directional sources may also be synthesized by means of the Fourier integral transform
utilizing the knowledge that in the far field, the excitation function and its corresponding pat-
tern function are a Fourier transform pair, indicated without proof in section E. This method
can then make use of the inversion properties of the Fourier transform, its limitation being
that g,(z), the "desired'' pattern function, can be specified in advance only over the accessible

region of the pattern.

With reference to Eqs. (E-2) and (E-3), by letting z = (a/A) sin 6, (y/a) = (x/2), and
(a/2)F(ax/2) = f(x), for reasons given earlier, the equations become

gy(2) = qu)e”'" dx , (H-23)
f(x) = Im(z)e‘j"” dz . (H-24)

Equation (H-23) is equivalent to Eq. (H-18) except for the limits in integration. It will be
remembered that if one member of a Fourier transform pair, say g,(z), is of finite length,

the other, f(x), will be infinitely long. If g,(z) is specified to be different from zero only in
the accessible interval (-a/A < z < a/A), f(x) cannot be zero outside the interval (-1 < x < 1)
and the achieved pattern, g(z), differs from the specified pattern, g,(z), by an "error pattern,"

bg(z), given by
error pattern = 4g(z) = g,(2) - g(2z). (H-25)

Due to the finite range of integration of Eq. (H-18), the Fourier transform method may be
insufficient for pattern synthesis. However, it is of value in synthesizing sources with oddly
shaped patterns and for problems where a series solution may prove too laborious.

EFFECT OF FINITE APERTURE WIDTH

The effect of limiting the size of the aperture is to introduce sidelobes in the radiation
pattern. The more smoothly an aperture distribution goes to zero at the edges of the aperture,
the smoother will be the radiation pattern. ""Smoothness' in a radiation patterr: implies not
only an absence of sidelobes, but also an absence of sharply defined beams. This is illus-
trated in Figures (H-7) and (H-8). A finite aperture width implies sidelobes, which may be
minimized but only at the expense of broadening the major lobe.

Two important aperture distributions (excitation functions) in spatial element analysis
are the

Gaussian Distribution

f(x) = e (H-26)
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Figure H-7 - Examples of the relation between the field at the edges of
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Figure H-8 - Examples of the relation between the field at the edges of
the aperture and sidelobes in the radiation pattern
and
Rayleigh Distribution
mx?
f(x) = xe i (H-26)

These distributions possess the very useful property of having self-reciprocal Fourier trans-
forras. That is, if the aperture is of infinite width, the radiation patterns will have the same
form as the aperture distributions, with the variable x replaced by : (cr s). The waveforms
are shown in Figure (H-9). That the Rayleigh distribution is proportional to the derivative of
the Gaussian distribution explains their relative properties.

In practical cases, .he aperture width will not be infinite, the radiation pattern will develop
sidelobes, and the reciprocity will be lost. Since a true Gaussian pattern has no sidelobes, a
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Figure H-9 - Self-reciprocal transforms

Gaussian-like distribution (distinguished by having most of its amplitude at the center of the
aperture) is suited for producing a pattern with small sidelobes although this does not give

the narrowest beamwidth for a given sidelobe level. In general, antisymmetrical patterns

tend to approximate the Rayleigh distribution and can be interpreted in a similar way as was
the Gaussian function. For a finite aperture, the Gaussian distribution and its corresponding
pattern are given in Figure (H-10). Whether a broad or narrow Gaussian distribution is desired
would determire applying either high or low values of excitation, respectively, to the edges of
the aperture. A measure ol the width of the Gaussian distribution is the taper ratio which is
defined as the ratio of the field strength at the center of the aperture to that at its edge.

_{_Tz
F(x) = e~ 2 3% TRET (3.03:)

TAPER 10/1 URUSED 24
-t s wI

-1 o] oo ol
_'.| APERTURE |4_

Figure H-10 - The effect of a finite aperture upon a Gaussian
distribution and its corresponding radiation pattern

EFFECT OF ELEMENT SPACING

A method of transmitting sound or receiving sound unidirectionally is by means of a linear
array of small nondirectional transducers referred to as point elements. If the elements are
directional, the directive properties of the array may be deterinined by considering the direc-
tive properties of both the individual elements making up the array, and an array of isotropic
radiators at the location of the point elements.

For the array of (2N+ 1) arbitrarily spaced point elements shown in Figure (H-11), the
discrete form of the pattern funciion, Eq. (H-11), is
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Figure H-11 - A linear array of 2N+ 1
unequally spaced elements
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2 %
n= - N

where d, is the distance from the nth element to the center of the array. If a relative source
strength or excitation coefficient, b, is defined as

— A
Z o, (H-28)
then Eq. (H-27) may be written as

jkdn sin 8

N
Gunes(8) = ) boe (H-29)

n=.N

Note that the directional characteristic is normalized for unity in the broadside direction, i.e.,

Ganer(0) = 1. (H-30)
With symmetrical excitation,
b, = b_, (n=1,2,...,N) (H-31)
Eq. (H-29) becomes
N
Gans1(6) = by + 2 ) by cos (kd, sin 6). (H-32)
n=1

If the elements are uniformly spaced a distance d apart, then d, = nd, and the sidelobe
level and beamwidth may be controlled by varying the element excitation. Equation (H-29)
may be regarded as a Fourier series expansion of the radiation pattern where the b, 's are
determined in a least mean-square sense, i.e., are Fourier coefficients. A general result of
uniformly spaced arrays is that the sidelobe level may be reduced by decreasing the aperture
excitation toward the extremes of the array, as indicated earlier. This reduction is obtained
at the expense of the array beamwidth.

If the elements are nonuniformly spaced, d, will not be a rational multiple of some unit
distance. Hence, the nonuniformly spaced array is characterized by spatial frequencies which
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are not related by integers and where the b, 's must be determined by a non-mean-square
error criterion.

An uniequally spaced array has many interesting properties. For example, there is an
equivalence between amplitude tapering of a uniformly spaced array and the space variation in
a nonuniformly spaced array. Hence, nonuniform element spacing may be used to reduce side-
lobes. Use of perturbation methods can reduce the sidelobe level to about 2/Np times the main
lobe level, where Np = 2N+1 is the total number of elements, without increasing the beam-
width of the main lobe. To achieve this reduction implies retaining uniform excitation.

A perturbation analysis may be performed to indicate small nonlinear changes in element
spacing. However, the more useful properties of nonuniformly spaced arrays depend on large
nonlinearities in the element spacings. An approximate method for making an analysis of such
arrays may be achieved by representing it with an equivalent uniformly spaced array (EUA).
This is done by Fourier expanding each term in Eq. (H-29) into an infinite number of uniformly
spaced equivalent elements and adding the individual expansions term by terin according to the
spatial frequency. For practical purposes, only & few terms of the expansion need be consid-
ered. The EUA ic the best mean square representation for the original array. It does not
physically exist but is us »d merely for analysis of unequally spaced arrays.

ADDITIONAL DESCRIPTIONS

In general, directivity, both in transmitting and on receiving, is dependent on the ratio of
the sound -vavelength to the din. «>ions of the radiator. If the wavelength is large compared
to the dimensicns, the sound is emitted uniformly in all directions and the transducer response
will be indepeundent of the direction of sound incidence. If the dimensions are large compared
to a wavelength, the radiation energy, received or transmitted, will be directional. Useful

measures of the directive properties of spatial elements are the directivity factor and direc-
tivity index.

The directivity factor (D.F.) is defined as the ratio of the intensity or mean square pres-
sure of the radiated sound in a free field at a remote point on the maximum response axis (MRA)
to the intensity or mean square pressure a' the remote point averaged over all directions. The
distance must be sufficiently great so that tae sound appears to diverge spherically from the
effective acoustic center of the source. The average intensity of the sound passing through a
large sphere of radius r is found by integrating the normal component of the intensity I, over
the surface of the sphere and dividing by the area, 4nr2. The directivity factor inay then be
expressed as

anr? 1

o

D.F. = ,

Ilnds
S

(H-33)

where I, is the intensity at the remote point o2 the MRA. In the far field, the intensity of the
radiated sound is the square of the absolute value of the pressure divided by pc. Equation
(H-33) then becomes

2
47r® p,
jpﬁ ds

For a line source of length (a), symmetrically excited, the directivity factor may be
written in the form

(H-34)

a/A
D.F. = —.7‘1—‘——'——" .

j g(2) dz (H-35)

[
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The problem of increasing the directivity factor of a line source with a given ratio of a/A is
equivalent to decreasing the integral

a/ A

f gz(z) dz (H'36)
©

subject to the normalization requirement that g(0) = 1. Using expansions {H-19a) and (H-19b)
and condition (H-20), for a finite number of terms N, maximizing the directivity factor becomes
one of minimizing the integral

2

/AN
] [Z an w,.m} dz (H-37)

M 0

subject tu the requirement that
N
DA, () = L (H-38)
[

In general, the problem of minimizing Eq. (H-37) is done using the method of Lagrangian
multipliers.

The directivity index (D.I.) is the expression of the directivity factor in decibels; thus,
D.I. = 10 log,, D.F. (H-39)

For a linear array of point elements, uniform excitation is necessary to produce the maximum
directivity index (MDI) for element spacing of integral-half-wavelengths. The maximum direc-~
tivity factor is then numerically equal to the number of elements N {(even or odd) in the array,
i.e.,

(D.F.), =N d/n = n/2 (n=1,2,...). (H-40)

max

For other values of element spacing the MDI is not
obtained with uniform excitation. There is little dif-
ferencebetweenthe MDI and the directivity index due
touniform excitation for element spacings greater

than a half-wavelength. However, for d/A < 1/2 there
M/\ | \/\f\f“ may be a significant improvement in the directivity
I index in going from uniform excitation to MDI excita-
| tion. The patterns due to the latter are superdirective

and obtained only at the expense of requiring out-of-

(a) phase excitation and relatively large range of amplitudes.

Certain applications may require special types of
directivity patterns, such as a difference pattern.
Whereas the sum pattern exhibits even symmetry about
a line drawn perpendicular to the radiator aperture at
its midpoint the difference pattern exhibits odd sym-
metry about the same axis. A comparison is shown in
Figure (H-12) for a line source. A sum pattern usu-
ally will have one major lobe in the direction of the
principal axis while a difference pattern has two equal
lobes with a null in the direction of the principal axis.

(b}

Combinations of sum and difference patterns are
Figure H-12 - Rectangular plots of used in sonar and radar systems to improve the accu-
a typical {a) difference pattern and racy of bearing measurements. The error signal

{b) sun pattern obtained is primarily determined by the slope of the
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difference pattern in the vicinity of the origin. To enhance the sensitivity to small changes in
angle, it is necessary that the slope be as steep as possible. For sum patterns the influencing
properties are direclivity index, beamwidth and sidelobes. For difference patterns, slope and
sidelobe level are significant for determining angular sensitivity. If the sidelobes are too
large, false indications of target direction may result in the presence of multiple targets.

Consider the pattcrn function g(z) in terms of the excitation function f(x) for a line source,

1

g(z) = J f(x)ej"zx dx . (H-18)

-1

The siope of this pattern, with respect to z is given by

d jmrz
gd(zz2 = wj ixf(xy e X dx. (H-41)

By setting z=0, the slope at the origin is

1

d
—gd(-zﬂ = wj jxf(x) dx . (H-42)
z=0 -1

If f(x) is subjected to a constraint such as constant power radiated, that is,

1
I |f(x)|2dx = a constant, (H-43)

1

then by employing the method of the calculus of variations the excitation function which maxi-
mizes Eq. (H-42) may be determined. If the constant is arbitrarily set equal to one, a uniform-
phase distribution function given by

f(x) = -j 1.22x (H-44)

will give rise to the pattern with maxinium slope at the origin. Any uniform-phase distribution
other than the linear distribution (H-44) will result in a smaller slope at the origin. The maxi-
mum slope pattern and the excitation function corresponding to it are shown in Figures (H-13)
and (H-14), respectively. The term "uniform phase'’ is seen not to be completely accurate
since the phase of the difference pattern changes by 180°. However, except for the 180° phase
reversal, the phase of the pattern and corresponding distribution is considered constant. Since
the linear excitation function gives rise to the maxinium slope pattern, the slope may be used
as a figure of merit with which to compare slopes of other uniform phase, constant power dif-
ference patterns. The maximum slope pattern may not be the most desirable pattern to use in
that the sidelobe level is quite high. Thus, a compromise must be made between slope and
sidelobe level for angular error sensitivity.

In section F, the z-Transform was shown to be useful for expressing discrete signals
just as the Fourier Transform was for expressing continuous signals. The excitation distribu-
tion in the discretc elements of 2 linear array may be considered as the sampled values of a
continuous function. Known relations in z-Transforms developed for sampled-data systems
can be used to simplify linear array analysis. It was shown earlier that arrays may be repre-
sented mathematically by polynomials and that impor‘ant characteristics of the radiation pat-
tern, such as the location and level of sidelobes and the beamwidth, can be analyzed in terms
of the properties of the polynomials. However, these are approximate and often quite tedious
to determine since the polynomials cannot generally be put in closed form. By employing
Z-Transform theory, the array polynomial can be expressed in closed form permitting charac-
teristics to be determined more conveniently.
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Figure H-13 - Maximum slope pattern

P Consider a linear array of N equally spaced
.2t /} elements. From Eq. (H-29), the polynomial for
o8+ / | the pattern function associated with the array can
! be written as
0.4+ |
PHEP PP o ettt —x N1 .
-101 -0.8 -06 -04-0Q 02 04 06 08 10 Yy = ' -
: ! Gn(z") Zo b(z) ", (H-45)
E/ o
|
3l where
. 2nd | v
Figure H-14 - Excitation function cor- 2 = e | A =ame (-46)

responding to maximum slope pattern
If the envelope cf the amplitude distributions of
the excitations in a linear array can be described
by a continuous function f(x) within the range 0 < x < (N-1)d, then the excitation coefficients
in Eq. (H-45) can be written as

by = f(0)
b, = f(d)
by.y = f[(N-1)d]. (H-47)
Equation (H-45) then becomes
Gy(z') = 2. f(nd)(2) " - ) f(ndy(z") " (H-48)

o

n= n=N

For equal amplitude excitation in the two end elements,

-(N-1) (H-49)

“ND] by s £0)2') .

Gy(z'y = [1 ¥ (z")

where F(z') is the z-Transform of the function f(x),
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)

F(z') = z{&x3)} = 2. f(ndy(z) ", (H-50,

n=0

G,(z') in Eq. (H-49) is expressible as a closed function of z', instead of a polynomial of N
terms. Note that increasing the number of elements, N, in an array does not increase the
compiexity of the expression for G, (z').

EFFECT OF AMPLITUDE AND PHASE ERRORS

The design of an array requires that individual element amplitude and phase tolerances
be maintained to achieve specified beamwidths, sidelobe levels, and difference pattern slopes.
The effect of errors on the radiation function will be discussed briefly.

In general, the presence of errors in an aperture distribution (or excitation function) will
cause some redistribution of directions in which the energy is radiated. This results in a
reduction of the energy radiated along the main axis relative to the total radiation. If the
errors vary slowly across the aperture, radiation components at small angles to the axis will
develop, influencing the beamwidth and beamshape. Rapidly-varying errors will produce side
radiation away from the main beam, but the increase in fine structure may not affect the radia-
tion function appreciably.

Phasing errors generally affect the n.1. , the sidelobe lcvels, and play an important role
in determining bearing accuracy. If an array has the proper phasing in a specified direction,
a random perturbation of the phasing will cause the intensity of the field and directivity index
to decrease. Minimization of sidelobe levels may be attained by varying the vector amplitudes
across the aperture in a predetermined manner, referred to as amplitude tapering. This is a
slowly varying effect and results in changes in the beamwidth. If random phasing errors or
amplitude errors a: introduced in the excitation function, the symmetry necessary for mini-
mization is destroyed and sidelobe levels increase.
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1. CIRCUIT FILTERS

1. INTRODUCTION

Previous analyses have been concerned with descriptions of simple circuit and spatial
elements — with a comparison of some of the analogous relationships which exist. The avail-
ability of numerous methods of describing these elements was noted along with the concept that
the nature of the input played an important role in determining which description was to be
employed. Additionally, the purpose of the analysis, that is, whether the description intended
s to describe a physical process, or facilitate computation in analysis or synthesis or to make
the realization of a physical element in some sense easier or more economical, was also dis-
cussed. Practically, the elements described are subjected not to a single input — or evena
single class of inputs — but to a wide variety. Some of the inputs contain information which
should be preserved, and others discarded. In its broad sense, "filtering' represents an oper-
ation on the inputs in such manner as to discriminate against the interfering or undesired
inputs while p1eserving the desired information. In view of the wide range of inputs -- desired
and undesired — and the range of functions, filters perform an impressive array of functions.
Analysis procedures and instrumentaticn are constantly evolving. It is not proposed tc review
all of these in detail. Instead, discussion will be made of representative cases in order tc
illustrate in a sense, philosophical, rather than technical aspect of "filtering" operations.
Although filtering represents perhaps the simplest operations with circuit elements, in deter-
n.ining the correct design, and in selection of the proper criterion for a particuiar application,
it must be recognized that even for simple operations there may prac.ically be complex com-
promises to reconcile.

A "classical" frequency filter is intended to separate two classes of signals whose spec-
tra do not overlap. As has been previously discussed, time boundaries imposed on signals
have spectra of large width and physically realizable filters cannot effect absolute separation.
In practice, we try to make the ratio of output energies of the desired and undesired signals as
large as possible. The classical filter specification does not take into account statistical
properties.

There are two basic methods of designing such filters. The oldest method is based on
image-parameter theory yielding Zobel filters. The other method is based upon insertion loss
theory and gives the Darlington filters. Image-parameter methods are based on the study of
elementary networks in terms of their image transfer constant and image impedances; the in-
sertion loss method is based upon prescribed transmission characteristics. Though the inser-
tion loss method is more involved, both theoretically and in computation, than the image method,
it is not only more flexible but also a better approximation to the physical situation.

A class of filters of increasing importance are those necessary to separate a given signal
from random noise whose spectrum overlaps that of the signal. In these cases, statistics of
the signals plays an important role in the determination of the filter. It is necessary to select
a suitable criterion and to determine how much noise may be accepted and how much signal
energy may be rejected to achieve the desired result. This problem may be approached from
two different points of view:

An extraction filter may be designed to recover or extract the message from a message-
noise complex with minimum message distortion. A suitable criterion for this problem involves
minimization of the rms difference between actual filter output and message. This problem was
investigated by Wiener {1949) for a continuous, time-invariant, linear filter having infinite
memory time (observation time) operating on a stationary random signal. Zadeh and Ragazzini
{1950) then extended Wiener's work for a time-invariant linear filter, having specified memory
time, for use with signals consisting of both a nonrandom polynomial and a stationary random
component. They assumed the signal to be obscured by stationary random noise and their filter
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reduces to a Wiener filter in the case when the nonrandom part of the input is zero and the
memory time is infinite. Work has also been done by Booton (1952) for time-varying filters,
by Zadeh (1953) for nonlinear filters, and a host of others who have, in part, extended the the-
ory to include discrete filtering. The solutions to these types of problems are integral equa-
tions that relate optimum filter characteristics to the statistics describing message and noise.
Although the mathematics involved is complex, optimum filters can often be closely approxi-
mated by fairly simple apparatus, such as delay line filters.

A predetection filter may be designed to increase the possibility of detecting the presence
of the message in the filtered output. 'A useful criterion for this problem is maximization of
the signal (S) to noise (N} amplitude ratio:

i _ instantaneous peak signal amplitude

N rms noise amplitude

North (1943) investigated this problem for the case of additive white Gaussian noise and later,
7Zadeh and Ragazzini (1952) treated the more general problem of ponwhite noise. The deter-
mination of an optimum filter for nonwhite noise is usually quite complicated.

2. CLASSICAL FILTER

An image filter is a network: made to operate out of and into appropriate impedances s0
that the conditions of maximum power transfer are approximated over the range of frequencies
to be transmitted. Its transfer constant is a measure of the attenuation and change in phase
encountered in transmission through the device. If the terminating impedances are selected in
a consistent manner, then the overall image transfer constant of a cascaded group of image
filters is the sum of their individual transfer constants. Thus, the characteristics of each
element will contribute separately, and in a predictable manner, to the performance of the
whole. This permits different functions to be designed as separate units which is very desir-
able in a complex system. However, this method has the disadvantage that the filter is assumed
to be terminated in its image impedance while, in practice, the filter is generally terminated
in a pure resistance. Since the image impedances vary widely with frequency, it is not possible
to achieve an image termination at all frequencies in the passband. Consequently, reflections
are set up at the terminals, and the attenuation, phase shift, and insertion loss will not be the
same as computed on an image basis. A number of correction factors and additional matching
networks are needed to achieve the desired transmission properties in actual operation with
resistive terminations. Even then, the filter usually cannot be designed with a minimum num-

ber of circuit elements, and in some cases, the solution proves impossible.

The insertion loss method originated from early work of Bennett and Norton and was devel-
oped independently by Piloty, Darlington, and Cauer in 1939. The design of an insertion-loss
filter is based upon prescribed transmission characteristics; it has been proven that for each
of the effective transmission characteristics that is permissible for reactive networks, there
exists a ladder configuration composed of simple elementary reactive 4-terminal networks
which realizes it. This kind of design has become, in recent years, the principal method of
filter design, in spite of the greater computational work it requires as compared to designing
on an image basis. The modern network approach is more exact and leads to designs which
are physically attainable in practice and whose final characteristics agree with calculations.
There are a number of characteristics which are required. In the design of systems for pulse
transmission, filters are often needed to fulfill requirements for both the attenuation behavior,
and the phase or the group-delay behavior in the passband. To illustrate the flexibility of this
method of design, severzl filters will be described:

(a) Filters Having Prescribed Attenuation Requirements
1. Power-term Filters—the attenuation behavior is represented, except for a con-

stant, by a power series which corresponds to an attenuation curve beginning flat at =0 and
rising monotonically to infinity.
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2. Tchebycheff Filters — the attenuation characteristic is expressed, except for a
constant, as a Tchebycheff polynomial, having a maximum slope in the transition between pass
and stop bands. The attenuation versus frequency is allowed to oscillate or ripple between
prescribed limits in the pass and reject bands while the phase and transient response are dis-
regarded. Thus, this design is useful when only the amplitude characteristic is significant.

3. Butterworth (maximally-flat) Filter -- this is actually a limiting case of the
Tchebycheff design where the ripple in the passband is reduced to zero. Phase and transieut
response are considerably better than those attainable with the Tchebycheff design. The filter
is characterized by considerable overshoot and undershoot when driven by a step function and
is of primary value when a flat frequency response in the passband is desired.

(b) Filters Having Prescribed Phase Requirements

4

1. Maximally Linear Phase (Bessel) Filter — the time delay throughout the passband
and most of the transition band is a constant. Thus, it has an excellent transient response
with minimum overshoot; there is no region of constant amplitude in the passband. For a
given number of filter elements, the slope in the transition region is much less than the Butter-
worth and Tchebycheff desigiis. This design is best suited for passing rectangular pulses or
modulation envelopes and where overshoot or ringing is undesirable.

9. Transitional Butterworth-Thomson Filter — the characteristics are between those
for the linear phase and maximally flat designs. Any degree of overshoot between the limits
of the two designs can be selected as the controlied characteristic with the remaining charac-
teristics heing optimized. Rise time and transition slope will also lie between the limits of
the two d=signs. This design is one of the best compromises between selectivity and transient
response and usually results in excellent correlation between calculated and realized

characteristics.

Although the insertion loss method is more involved, both theosetically and in computation,
than the image method, it affords greater flexibility in physical prcblems. However, exten-

sions of both methods have brought them closer together and towards a unified filter theory.

3. DETECTION OF A PERIODIC WAVE TRAIN

There are two basic methods for detecting repetitive signals upon which a strong ergodic
noise signal has been superimposed. They are:

1. Correlation Analysis,
2. Comb Filtering

nt, the selection of one over the other will depend upon the

These methods are nearly equivale
exity of the instrumentation, and how the results are to be

type of repetitive signal, the compl
used.

CORRELATION ANALYSIS

The autocorrelation function y(7) of the additive mixture of a repetitive signal s(t) and

a random noise n(t) is

YT = Ygs(T) + dn(T) + Uns(T) + Pen(T) - (I-1)

of both components to be zero, the crosscorrelation terms in Eq.
f incoherence between signal and noise, and Eq. (I-1) simplifies to

1-2)

Assuming the mean values
(1-1) will vanish because o

Poen(™) = wgg(T) + Yan(™) -
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Thus, the autocorrelation function of signal plus noise, both having zero means, is the linear

superposition of the autocorrelation functions of each separately. In a region sufficiently
remote from the origin, how far depending upon the frequency range of the random noise, the
absence of a periodic signal is indicated by-an autocorrelation function of constant (or zero)
value whereas its presence will be evidenced by a periodic variation. The autocorrelation
function for a sinusoidal signal in random noise is illustrated in Figure (I-1).

The improvement in signal-tc-noise ratio in correlation equipment increases with the
time of operation of the correlator. Therefore, theoretically an infinite signal-to-noise ratio
can be obtained in the detection of a periodic signal in noise. However, in practical measure-
ment, correlation must be determined in a finite time, A description of operation of a corre-
lator may be given by statistical sampling theory. Figure (I-2) shows a portion of a random
function whose autocorrelation is desired. Instead of shifting the function and performing a
continuous multiplication, a set of samples a,, a,, az, ... are taken, spaced at regular inter-
vals as shown, and a second set of samples by, b,, b, ... is obtained, each sample trailing the
corresponding sample in the first set by time ;. The autocorrelation curve at = = 7,, has the

approxiraate value
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Figure I-1 - Use of autocorrelation to discover a signal
in a strong background of noise
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Figure I-2 - Determination of autocorrelation curve by statistical sampling theory

N
~ 1
) = WZ a b, . (1-3)

n=1

If the samgling period T, is sufficiently long, then the samples a,, a,, a3, - . are practically
independent of one another. The complete autocorrelation function is obtained by varying the
spacing () between samples. The accuracy in determining y¢7) and the improvement in signal-
to-noise ratio increases with the number of samples values.

If the frequency of the repetitive signal is known, an even greater improvement in signal-
to-noise ratio can be obtained by means of crosscorrelation. Using a reference signal of the
same repetition period as the desired signal, the crosscorrelation function is

Vs en,s,(7) = 'i_imic; % j [s,(t) + n(t)] [sz(t+7')] a. i-4
- e J
= Yya(T) + YT (1-5)

Since n(t) and sy(t) are incoherent, yy,(7T) vanishes, and unless the repetition frequencies of
sy(t) and s,(t) are determined by the same source, y,,(7) will also vanish. When s,(t) and
s,(t) are incoherent some signal-to-noise improvement may be obtained by using a short-
time approximation to y,,(7), since the latter will not vanish. The improvement of signal-to-
noise ratio is dependent on the time available which may be established by spectral fluctuations
or by perturbations in the propagating medium.

Wher: the reference signal s,(t)is comprised of a series of impulses whose period of repeti-
tion is coherent with that of the desired incoming signal, s (t) may be expressed as the Fourier
series

jn—— t
sty =R )T (1-6)

where K is the strength of the impulse and T is its period of repetition. Equation (I-5) then
becomes

K
Y12(7) = s - -7

The result of crosscorrelation turns out to be precisely the desired signal s,(t) except for the
magnitude factor K/T, which can be adjusted to any desired value by changing K. Therefore,
crosscorrelation with a series of impulses having the same period of repetition as the zignal,



150
1. removes the noise,
2. gives the desired signal without distortion,
3. gives the location of s,(t) without any unknown displacement of the origin.

The latter two results illustrate the advantage of crosscorrelatior over autocorrelation since
the latter generally distorts the signal and does not give its location in time.

COMB FILTERING

It was indicated in previous discussions that a periodic sequence of pulses could be repre-
sented by a line spectrum provided that the pulse train was not bounded in time — that is,
existed over an infinite interval., When the pulse sequence was boundcd, a continuous spectral
p distribution of energy resulted. A finite sequence of pulses may be represented by a continuous
frequenc; spectrum consisting of a finite energy distribution concentrated at the frequencies
where line components would exist if the sequence were infinite. The use of a ""comb" filter
which has passbands centered about harmonics of the pulse-repetition-frequency permits an
imprcvement in output signal-to-noise in comparison to processing a single pulse. It should
be recognized that signal-to-noise ratios alone do not serve as absolute performance criteria
since such aspects as false alarms and incorrect dismissals are not directly indicated. How-
ever, signal-to-noise ratios when properly interpreted may be used at least in comparing
some of the characteristics of various filtering operations.

Transfer functions of optimum comb filters may be determined by us... .ne generalized
methods of Zadeh and Raggazzini, to be discussed later. The physical operations associated
with such filters consist of a cascade connection of a noise-shaping network, a single pulse
filter, a nonfeedback type comb filter, and an output delay line. A representative configura-
tion is shown by Figure (I-3). The transfer function of the noise-shaping network is equal to
the reciprocal of the noise power spectrum P _(u). The purpose of this network is to preferen-
tially weight the components of the signal where the noise spectrum has its lowest values.
Following this weighting network is a single pulse filter which is identical with a North filter

i which represents optimum processing of a single rectangular pulse masked by white noise.
The comb filter sums the individual pulses of the pulse train and weights them in proportion 2
t their amplitudes.

The passbands of the filters are centered about multiples of the pulse-repetition-frequency,
and the spread of the signal energy is inversely proportional to the number of pulses in the
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Figure I-3 - Filter maximizing signal-to~noise ratio
at or after the trailing edge of the last pulse of a
uniform pulse train
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pulse train. When the width of the passbands is 2/mT, with o equal to the number of pulses and
T being the period, then approximately 90 percent o; the signal energy about each prf is within
the passband of the filter. For a small number of pulses, the distribution is broad and there
may be an overlap of energy among the elements of the comb. However, the error in neglect-
ing this overlap is small when the number of pulses is greater than 10. An approximate anal-
ysis of improveinent to be expected by the use of comb filters involves considering the effect

of band-limitr q noise which is added to the signal pulse train. it 15 assumed that the noise is
gated and thus exists only for the duration of the pulse train. Consequently, noise energy rather
than noise power can be used, having total mean energy N_ in the interval =(278) 2w < (278).

;o= 10 1ogN£ (db) (1-8)
o

where E = total Input signal energy. The filtered signal energy is approximately 0.90aE with
(a) representing the filter gain. The noise output from the filters is

Nep = a(243)n, . (1-9)

Practically, (8/fy << 2 and N.; may be approximately represented by a2N /m. Finally, the
énergy signal-to-ncise-ratio at the output is given by:

r., = 10 log'(’)"-l%g = r; + 10 log 0.45m .

o
2 -2

(I-10)

Consequently, the improvement is related to the number of pulses, with, of course, the require-
ment that the number of pulses to be processed be known and that the filter bandwidths conform
to the pulse train. Figure (I-4) shows the improvement in output signal-to-noise-ratio where
the comb elements are weighted uniformly. Other weights may be applied to the different ele-
ments of the combs. If the weighting is determined by applying the North imatched-filter tech-
nique over the entire interval then the improvement is stil}] dependent on the number of pulses

prf region would be proportional to the maximum ampli-
tude of the signal Spectrum at = 2pm/r, This method in-
3z volves an output signal-to-noise relationship given by
r; + 10 log 0.45m + 2.1 db.

z4 The effect of the comb filter on the pulse shape will
cepend on the weights which are applied. The first method
(corresponding to the uniform weighting of elements in an
I8 array), will have the least effect — with the pulse being
i rounded off somewhat, The North filter having the greatest
improvement, will also have the greatest effect on the
shape, producing an output which is almost triangular.

IMPROVEMENT IN SIGNAL-TO-NOISE RATIO DB}

. ,Z, ,2,0 = stances where the exact location is dependent on the pulse

NUMBER OF PULSES (m) shape, for example on the leading edge of the pulse, comb
filtering may introduce significant errors,
Figure 1-4 - Improvement
:2 S;i?,a;otrc;nn:;f:brfﬁizrd:: Detailed analyses of a number of realizable methods
a function of the number of of comb filtering have been made in Refs. 1-31 and 1-32. In
Pulses in a sequence particular, a comparison is made rf correlation with
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filtering methods. This analysis, using peak signal-to-rms-noise as the criterion, shows that
cross correlation is equivalent to the optimum filtering briefly described in the precering
paragraphs. The corrclator performs in the time domain an operation similar to the operation
of the comb filter in the frequency domain. The comb filter passes harmonically related fre-
quency components, while suppressing bands of frequencies lying between the passbands. Cor-
relation involves multiplication of the incoming signal with a reference signal ané averaging of
the multiplier output with a low-pass filter. Only those frequencies present in bot.: the input
and the reference signal result in a zero frequency multiplier output component that passes
through the low-pass filter. Decreasing the cutoff frequency of the low pass correlator filter
corresponds to narrowing the width of the comb filter passbands. If crosccorrelation is em-
ployed, the reference signal is locally generated w. aout noise. For autocorrelation, the ref-
erence signal is the input signal delayed by one pulse-repetition period and consequently is
perturbed by noise — and as a result, autocorrelation is inferior to crosscorrelation. If the
starting point of the incoming signal is not accurately krnown, then several correlation chan-
nels each having a different value must be employed, or it is necessary to store the signal and
search through a range of (r) values with the single channel. However, the adverse effects
on comb filters caused by impulsive disturbarces may be greater than for the correlator.

Although more detailed analyses of processing methods may be made, the interpretations
of the analyses must be made with care. OQutput signal-to-noise ratios which have been used
in establishing performance characteristics may inadequately describe the methods when
employed in a system. Additional considerations which may be more difficult to handle ana-
lytically involve determining false alarms, incorrect dismissuls, particularly when the inter-
ference may consist of disturbances having non-Gaussian characteristics.

COMPARISON OF ANALOG AND BINARY INTEGRATION

The detection of repetitive signals in noise may be improved by integration techniques.
Regardless of the method used in any particular integration scheme, a fundamental require-
ment which they ali have in common is that of a suitable memory. This memory must be able
to accept and remember with sufficient accuracy a number of signals contaminated by noise.
When a number of such sequences have been added while stored, their sum may then be ex-

tracted and examined.

The method for obtaining the desired signal storage may be either analog or digital in
nature. Many of the basic analog integrating devices integrate by remembering the waveform
of the signal and by using successive samples to obtain improvement. For example, if a suc-
cession of impulses are applied at intervals At to a single RC network, then the response E, ¢
at the time the nth signal is applied is

|

N -At/RC
Eout = ic-[x‘.nfl‘:n_le oo

“+E,

-{(n-1)At/RC
e ™Y ] (I-11)

The law of addition here is a weighted linear one in which the effect of each signal is exponen-
tially weighted. When periodic signals are applied to regenerative delay-line integrators, the
delay is made equal to the repetition interval of the signal and the summation again follows

the law

Egue = Eo + Eqqe  + +o- + Ee (M7D° (1-12)

out

where o is the attenuation in nepers and is greater than zero. Extending this method to other
elements, RC networks, regenerative dealy-~line loops, narrow-band filters, and storage tubes,
all have the same general law of addition, i.e.,

Egue = ) Ege ("7 (I-13)

q=1

If we were to calculate the output probability disicibution when n mixed signals are added in
accordance with Eq. (I-13), we would find that the signal-to-noise improvement is a function of
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n, the number of signal-plus-noise additions, and 7, the exporential weighting factor. Specifi-
cally, when successive repetition intervals are added, the noise increases roughly as the square
root of the number of additions, and the signal increases as the number of additions. Hence,

the relative signal-to-noise ratio should increase as the square root of the number of samples
added. There are several disadvantages to analog integrators. The most important is that they
require a large number of memory elements to store the waveform of the signal, thus making it
difficult to realize long memory times.

Binary integration requires fewer memory elements since signals are quantized into two
amplitude levels 21d in time between fixed time markers. In the process of quantizing, if the
complex signal and noise waveforra between given time markers exceeds a predétermined
amplitude, a standard pulse is generated at the end of the interval. If the threshold is not
exceeded, no pulse is generated. The probability of obtaining a standard pulse can then be
determined from the probability distribution function for the given complex waveform. This
method of integration then becomes a process of adding signal waveforms in successive repe-
tition intervals.

4. PREDETECTION FILTER

INTRODUCTION

The primary purpose of a predetection filter is to enhance the strength of the signal rela-
tive to that of the noise and thereby facilitate detection. The form the filter takes will depend
upon the information about the signal and noise that is available.

In most practical situations, information available is incomplete and it is necessary to
niake assumptions regarding the character of the noise and to select an adequate criteria from
the standpoint of accuracy and convenience. Two types of predetection filters are the North or
"matched" filter and the Zadeh-Ragazzini optimum predetection filter. Though the matched
filter is actually a limiting case of the latter, it will be discussed separately due to North's
theory pioneering the field of optimum filters. It also provides a good foundation for evaluat-
ing more complex predetection filters.

MATCHED FILTER

The correlation of one waveform with another can be carried out by passing the first wave-
form through a linear system whose impulse response is the time reverse of the second wave-
form and observing the output at a certain instant of time. If the two waveforms are identical,
the filter is said to be ""matched" to the input waveform. The filter output as a function ¢ time
is then the autocorrelation function of the wavelorm. Generally speaking, to distinguish «mong
a group of signals (including the absence of a signal) masked by additive white Gaussian noise
is equivalent to a coherent detection in which integrals I, of the form

©

I, - f Y(t) x, () dt (1-14)

-

are compared with each other for given thresholds. In these integrals, y(t) is the received
signal and the x,(t) are the various signal waveforms in the absence of noise. If the integral
15 computed by multiplication and integration, the detection process is called "correlation
detection.” If the integral is obtained as the output of a linear filter at a given time, the proc-
ess is then referred to as "matched filter detection." The two processes are, in a sense,
equivaient.

To know whether a signal plus ncise or just noise alone is present at a certain instant of
time, say t = t_, we require the filter output at that time to b greater when x(t) is present
than if it were absent, This is usually accomplished by making the instantaneous power in the
filter output containing a signal at t = t_ as large as possible compared to the average power




in the noise =t that time. If a mean-square criterion is used, for the case of additive white
noise the signal-to-noise ratio o in the filter output may be expressed as

E
PEN, (1-15)

where E is the total energy inthe signal and N, is the power spectrum of the noise, and is a

constant. The equality in Eq. (I-15) is obtained for a filter whose impulsive response has the

form of the image of the signal to be detected. That is, if H(jw) i3 the complex 'ransfer func-
tion of the element, then o is 2 maximum at time t_ for a signal x¢t) when

H(jw) = X*(jw)e 1%t (I-16)

The transfer function is the complex conjugate of the Fourier spectrum of the signal multiplied
by a phase factor exp (-jwt,). Equation (I-16) is referred to as the Fourier transform criterion
and the filter is called 2 matched filter.

Although the transfer function depends upon the instant of observation t_, the correspond-
ing value of the maximum ratio is independent of time and will thus be the same for all values
of time for which H(jw) satisfies Eq. (I-16). For Pnax t0 be valid at any time t, desired, we
must obtain a physically realizable filter when t_ is inserted in Eq. (I-16). The necessary
condition for realizability when dealing with real signals is that all of x(t) must have entered
the filter before the time t, when the filter is expected to give maximum signal-to-noise ratio.

When Eq. (I-16) is satisfied, the output signal y(t) will be, using Eq. (G-21),

jo(t-t,)

) 2
y(t) = %,,—J Xjer! * e do. (I-17)

This however, from the Wiener-Khintchinetheorem, is the finite autocorrelation function of the
input signal displaced by the time t . Therefore, the resuits of correlation analysis on arbi-
trary signal waveforms mixed with white, Gaussian noise may be deduced from the theory of
matched filters.

In a matched filter, the product of the "widths' of the matched-filter output waveform and
associated spectra should be a constant of the order of unity, the exact value of which depends
on the definition of "width" (see section A.II-3). Thic means that the width of the signal com-
ponent at the matched filter output cannot be less than the order of the reciprocal of the signal
bandwidth. In simple detection problems, for the case of white, Gaussian no’ . all signals
having the same energy content are equally effective. Peak power, time dura..on, bandwidth
and waveshape of the signal, per se, ao not affect the output signal-to-noise ratio. However,
for the case of bandlimited white noise of fixed total power, of all signals with the same energy,
the one with the largest bandwidth is the most desirable. In system applications such as sonar
and radar, it is often necessary to include requirements for range accuracy, resolution,
and ambiguity, in addition to detection under noise-limited conditions. The idealized require-
ments of accuracy and resolution dictate a large bandwidth, while minimizing ambiguity re-
quires a peak in the output of the matched filter at the time corresponding to the unknown delay
and zero everywhere else. The width of the peak must be sufficiently small for multitarget and
multipath situations.

If in addition to being delayed, the signal is also shifted in frequency by doppler effects,
the receiver should contain a bank of matched filters. The detectability of the signal is still
governed by the signai-to-noise ratio, Eq. (I-15), obtained without doppler shift. For multiple
targets, each target represented at the receiver input should excite only the filter in the
niatched filter bank which corresponds to the target doppler shift (velocity) and should cause
a sharp peak to appear in this filter's output envelope only at a time corresponding to the delay
of the target, and nowhere else. The response of a filter at time (t) to a nondoppler-shifted,
nondelayed signal, when matched to the doppler-shifted signal, is the real part or envelope of
the complex Fourier transform




x(t,¢) = 2

F(j2nfyF* [j2n( f - )] AT (1-18)

f

for £ > 0, where ¢ is the doppler shift and F(j2~f) is the Fourier spectrum of the received
signal. Equation (I-18) is the joint autocorrelation function or ambiguity function, and for sig-
nal detectability its envelope |x(t,¢)| is required to be large at t = 0 if ¢ = 0, and small
otherwise. By applying the time-bandwidth product relationship to the ambiguity function, we
find that the "'width'"" of the peak response cannot be less than the order of 1/TW. Thus, in order
to obtain a very sharp central peak it is necessary, but not sufficient, to make the T™W product

of the signal very large.

In practice, single target conditions are not encountered, making it necessary to consider the
relationships among signals. Specifically, the various signals should be distinguishable so
that the overali probability of error in reception is minimized. For the special case of binary
transmission, it turns out that if the two signals are a priori equally probable, one should use
equal-energy anti-podal signals, i.e., x,(t) = -x,(t). For the band-pass case in which the
carrier phases are unknown, an optimum system is cne where the signals are "envelope-
orthogonal.” Another method is using signals which are rectangular bursts of sine waves, the
sine-wave frequencies of the different signals being spaced apart by integral multiples of 1/T
cps, where T is the duration of the bursts. A third method is using code symbols in the form
of orthogonal wide-band signals having the same energy per symbol. It is not essential that
the symbels be strictly orthogonal but only that the interaction energy be small and not
concentrated.

Since approximately 2WI' '"'numbers' are sufficient to describe a signal which has an effec-
tive time duration T and an effective bandwidth %, a filter can be synthesized by 2WT elements
or parameters. A form of matched filter is the tapped-delay-line filter. First, to illustrate
the properties of matched filters consider the system of Figure (I-5). A signal, x(t), for some
duration T, may be considered to be generated by applying a unit impulse at ¢t = 0 to a linear
filter whose impulse response is x(7). To this is aaded white noise n(t) of power density N_.
The total signal y(t) = x(t) + n(t) is then passed into a filter, matc! ed to x(t), whose output
is denoted by g(t). For the class of signals where the signal-generating filter can be repre-
sented as the tapped-delay-line spectrum shaper of Figure (I-6), the speciruin X(j2vf) of the
signal will have the form

n -j2mfA
X(j2nf) = F(j2nf) ) Gy(j2nf)e (1-19)

i=0

where 4, is the delay associated with the (i)th terminal. A filter matched to this signal may
be obtained by replacing the G;*s and F(j2#f) by their complex conjugates and applying the
input at the end of the delay time, i.e., at the terminal A . The transfer function H(;j2~f) of
the tapped-~delay-line matched filter will then be

= -j2mE(A_-A;
H(j2rf) = F*(j2nf) Z Gi(j2nf) e JAmECha-0y) (I-20)
i=0
8(t) g x(7) | x(t) y(t) g AT L a(t)y
X1z} 2" (jzmt)
SIGNAL-GENERATING MATCHED FILTER

FILTER
n(t)
WHITE NOISE

Figure I-5 - Illustrating the properties of matched filters
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Figure I-6 - A tapped-delay-line spectrum shaper
which, when compared with Eq. (I-19), becomes
-j2nfA
H(janf) = X'(2fye " (1-21)

If F(j2nf) and G;(j2nf) are assigned phase functions which are uniformly zerc, then
F'(j2nf) = F(j2rf) and G;(j2wf) = G;(j2nf). The advantages of a single filter which can per-
form signal generation and matching is quite evident in situations where the transmitter and
receiver are physically at the same location. The various restrictions set by a problem may
be accounted for by adjusting the characteristics, i.e., F(j27f), G;(j2rf) and 4, for all (i),
of the filter.

ZADEH-RAGAZZINI OPTIMUM PREDETECTION FILTER

In evaluating the performances of various elements, it is necessary to note both the di{fer-
ences and similarities between the criteria used. First, let us consider a conventional filter
(2 network whose function is to separate signal from noise) whose input is the sum of a signal
s;(t) and 2 noise n;(t). If the filter is linear so that the output is the sum of its responses to
s;(t) and n;(t), denoted by s (t) and n(t), respectively, and if the output s (t) + n (t) is
required to be as close as possible to the input signal s;(t), then the filter is said to be opti-
mum when using the mean-square error criterion if

T 1/2
2
{%j [so(t) + ny(t) - si(t)] dt} = a minimum . (1-22)

0
The only assnmption made is that s (t) and n,(t) are stationary and independent.

A predetection filter intends to facilitate the detection of s;(t), rather than to reproduce
s;(t). Consequently, a predetection filter ig said to be optimum if the "distance' between the
signal component s (t) and the noise component n (t) i8 maximized with respect to a con-
straint on n (t} {or s (t) ). A constraint is needed, otherwise the rdistance"” could be made
as large as desired merely by increasing the gain of the filter. If a mean-square error crite-
rion is used, and the constraint is expressed in terms of the "distance" between n(t) and the
zero signal, the quantity to be maximized by the filter is

T 1/2 T /2
2
{%E [s°( £ - n"(t)] dt} - K{%j "o(t)z dt} = a maximum (1-23)
o 0
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where K is a constant (Lagrangian multiplier). If the signal s;(t) is assumed to be a specified
but otherwise arbitrary function of time, and the noise n;(t) is ergodic and has a known coxrre-
lation function y, (), then the time averages in Eq. (1-23) may be replaced by ensemble aver-
ages, with (t) held constant at a fixed value t_, relative to a temporal frame of reference
attached to the signal s;(t). Equation (I-23) then becomes

502(tn) - ;m:(t) = a maximum (1-24)

where (u) is a constant equal to (K- 1) and the bar indicates a time average (which equals the
ensemble average). For a linear fiiter, Eq. (I-24) is equivalent to maximizing the signal-to-
noise ratio (p), i.e.,

5 (%) .
p = — = a maximum (1-25)

ng (t)

which is the criterion used in Notrth's theory. Thus, if the criterion used to optimize a pre-
detection filter is of the mean-square-type, and the filter is linear, then the filtering criterion
reduces to the North criterion. The primary difference is that the noise in the North filter
was assumed to be white, Gaussian noise, while in the present case, the only restriction im-
posed is that the noise be ergodic. The predetection filtering criterion, Eq. (I-23), may also
be expressed as

(1-26)

n°2(_t) - Ks (t)) = aminimum
which is the most convenient form for design purposes.

For the case of nonwhite, Gaussian noise, the transfer function of the linear, physically
realizable optimum predetection filter having infinite memory time is expressed as

T T s*iwyel® (t7te)
H(jw) = m%(—j;)-%e"“‘dt J “‘“N;:jw,) dew' a-27m)
where
«' = variable of integration,
* = complex conjugate,
S(jw) = Fourier transform of the signal s;(t) at the input,

N(«?) = power spectrum of the noise n;(t) at the input,

N,(je) = factor of N(»?) which, together with its conjugate, is analytic in the right half of
the jo plane, and thus, N,(jw)N(je) = N(w?).

In general, N(«?) is of the form

2 2¢
N(w2) - a, + agw + + agw (1—28)

2 X. 2m
b, + bjw® + + b w

where (m) and (f) rarely exceed (3). If the input noise is assumed white, the transfer func-
tion obtained from Eq. (I-27) is in agreement with matched filter theory.

In the more practical case of finite memory, the situation is a little more complicated due
to the requirement that h(t), the impulse response, vanishesnot only for t < 0 but also for
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t > T, where (T) is a specified ceastant. The impuisive response of the optimum fiiter is
found to be the sum of the impuise response for the infinite memory case plus three summa-
tions. The summations invoive impuise functions of various orders, arising from discontinui-
ties of hi(t) and its derivatives at t = 0 and t = T and the generai soiution of the differential
equation A(-p?)h(t) = 0 where A(«?) is the numerator of N(«?).

It is found that Eq. (I-26) is minimized if the impuise response satisfies the integral
equation:

T
Jh(-r) Y(t -7T)dr = s;(t, - t) for 0 <t <T (1-29)
[}

where v, (7) is the correlation function of the noise component of the input to the filter. When
T = », Eq. (I-29) reduces to the Wiener-Hopf equation which is encountered in Wiener's theory
of prediction. If the impulse response for finite observation time is the solution of Eq. (I-29),
the mean-square value of the noise output of the optimum filter, o2, is numericaliy equal to the
signal output at t = ¢, i.e,,

T
o2 = j'h(t) si(ty- ydt = s(ty). (1-30)
0

Using Eqgs. (I-25) and (I-30), the signal-to-noise ratio (p) at the output of the optimum filter is

' 2
LT TR (1-31)
o

pmnx

It is important to note that the criterion used for botb the matched filter and the Z-R opti-
mum predetection filter is of the mean-square-error type. There are many criteria that may
be used to evaluate optimum performance but the mse is chosen primarily for its accessibility
to analytic manipulations. The main advantage of the above methods for optimum filter design
is that they require relatively little statistical information about the noise and are thus less
critically dependent upon the time and space stabiiity of the signal and noise characieristics.

A priori knowledge of the power spectrum or the correlation function of the noise is usually
sufficient.

5. FILTERING IN AN IMPULSIVE NOISE BACKGROUND

An important class of interference which presents a different type of filtering problem is
impulsive noise. Its distinguishing feature is that the energy occurs spasmodically, rather
than continuously. Impulsive noise ordinarily has a wider spectral energy distribution than the
signal. In underwater acoustics, impuisive interference sources may consist of explosives,
earthquakes, or mechanical impacts generated at or near the receivers. Electromagnetic
impulsive sources may consist of lightning discharges, or automotive and aircraft ignition.
Statistical distributions of impulsive noise may be non-Gaussian and consequently the analyses
of filtering problems previously described are not appiicable. In the previous problems, the
effectiveness of filtering operations was determined by coraparison of the interference dis-
tributions with and without the signal being present. It was indicated that when the noise is
white, and Gaussian the desired filtering operaticns can be determined — with an important
advantage being that the only a priori information required is the mean power spectrum (or
autocorrelation function), and the sole constraint being that the desired and undesired source
are not correlated. Knowledge that the interference is Gaussian permits statistical predictions
of performance — for example, for such distributions, the instantaneous value exceeds 3.09 x
rms value for only 0.2 percent of the time.
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Although for non-Gaussian distributions it is not possible to derive detailed analyses from
knowledge of the spectrum, or autocorrelation function alone, it is nevertheless possible to
establish upper bounds. If nothing is known of the distributions, then in accordance with a
theorem by Tchebycheff, the portion falling outside (T) times the rms value must be less
than (1/T?), Consequently, in order to obtain equivalent probability of ""performance," it would
be necessary to set T = 22.36 for an unknown distribation (in comparison to 3.09 for a Gaussian
distribution) with 1,/T2 = 2 in 1000. This type of operation is of course not effective, since it is
based on using a rather primitive a priori specification — namely, only that the interference is
non-Gaussian. If in addition, other information is available, then effective nonlinear filtering
may be employed. Non-Gaussian interference can be analytically distinguished from Gaussian
in terms of the concept of entropy power. For impulsive interference the entropy power is
low — lower than its real power — and although it may have the same power spectrum as ran-
dom noise it differs from random noise in having specifiable phase-relationships; its specific
characteristic is a large amplitude which lasts for a short time.

The =ffectiveness of filtering is always based on tbe simultaneous operation on both the
desired and undesired signal and consequently, it is not just the comparison of impulsive inter-
ference with Gaussian interference that is important. It is necessary to compare the struc-
ture of the desired signal with that of the undesired. In some instances, nonlinear '"'filtering"
may be usefully applied to improve the response of the system in the absence of ncise — oper-
ating on known characteristics of the signal which may be specified in terms other than its
power spectrum. Examples of this are found in television where the picture sharpness may be
increased by nonlinear filtering — apart from noise considerations.

One of the oldest imnylsive noise-suppression techniques involves the use of an amplifier
which has considerably greater bandwidth than that needed for ‘he signal alone. The combined
effects of the signal and interference will saturate the nonlineur circuits — since the clip-level
is set just above the maximum €xpected value of the signal envelope. This operation will re-
move the peaks of the noise spikes. When the duration of the noise spike is short compared to
the rate at which the signal envelope is changing, the remaining interference energy will be
outside the signal band and may be removed by proper filtering.

It is important to recognize that the distribu-
tion of non-Gaussian interference is dependent

w FREQUENCY=22KC on the time for which the noise is integrated be-
E: BANDWIDTH DYNAMIC RANGE fore the variation of its envelope is determined.
E 90-0.0001 % When the integration time is long (for example,
Eﬁ \ . —— 1100 G0db when rarrow band filters are used) the distribu-
vz Ky W\ == e s tion approaches Gaussian — although for some
gz L £ ! types of interference it may be necessary to uae
£z [ very long integration times. Figure (I-7) illus-
2L trates the moplitude distribetions of atmosphes tc
¥o B noise envelopes as a function of receiver band-
Eﬁ : width. Figure (I-8) compares a type of impulsive
g L noise with Gaussian, and in terms of the Central
tw g Limit Theorem, it is possible to convert a non-

o1 051 510 50 1000 10,000 Gaussian into a Gaussian process by increasing
FIELD INTENSITY(uv/ METER) the integration time. Based on this factor, it is

possible in some problems to minimiza the ad-
verse effects of impulsive noise. Assume that
the interference consists of a succession of tran-
sients whose duration is approximately equal to
the reciprocal of the system bandwidth. If these
impulses are passed through a linear filter whose
impulse responsc has a very large TW product, then the transient response will last for a longer
time than the channel response. A filter transient response of this nature is indicated by Fig-
ure (I-9). Ernergy delivered in the original impulse will be ""'smeared" over the time interval
Tg, and consequently the peak amplitude will be reduced by the ratio of the channel response to
the smearing time. The smoothing may be continued to the point at which the length of the
swuearing becomes comparable to the average time interval between pulses.

Figure I-7 - Amplitude distributions
of atmospheric noise envelopes as
functions of receiver bandwidth
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The smearing of the noise must be done in such a way that the signal itself is not badly
degraded. If a total bandwidth of W is required in the channel and then, if tuned-circuit filters
are used whose bandwidth is inversely dependent on the smearing time, then a total of 2TeW
channels would be required to accommodate the total bandwidth W. The requirement for mul-
tiple channel processing may be eliminated by using encoded transmissions wherein the trans-
mission would be in terms of waveforms which differ from an impulse and whose duration
would extend over the time interval Tg. As a result, at the receiver, the decoding process
would consist of processing over the interval Tp; thereby automatically performing the smear-
ing process on the interference.

6. EXTRACTION FILTER
INTRODUCTION

There are many factors to consider when "optimizing" a filter's performance. Optimiza-
tion will depend on the purpose of the filter, the nature of the inputs, the criterion employed
for evaluating performance, and component tolerances. In the preceding discussions, the prob-
lems involved detecting the presence or absence of a signal masked by a noise background.
When the spectra of the signal and noise do not overlap apprcciabkly or are different in their
time structure, then various filtering methods may be used. As the performance requirements
become more severe, analysis becomes more complex. Effects such as interaction between
spectra, rate of change of spectra, and finite memory time must be considered. Physical real-
izability and significance of criteria employed in design needed to be more carefully examined.

An important problem involves preserving or extracting the waveshape of a signal. A filter
which performs this operation is called an extraction filter and may be designed for smoothing
or predicting or may combine both operations. A smoothing and predicting filter extracts the
wanted signal from a signal plus noise complex and yields future values of the signal.
Physical prediction depends on the process having statistical regularity, and on the
existence of correlations between future values of the signal and past values of the known data.
If the prediction is accomplished by a iinear operation, then the only type of correlation that
can be used is linear correlation. This has the disadvantage of not making complete use of
possible relationships contained, for example, in higher moments. I does have the advaniage
of simplifying the analysis and facilitating synthesis of the optimum filter. Often, a linear
prediction is the best that can be done though it may be inadequate. The application of corre-
lation and spectral analysis to the design of linear systems for statistical smoothing and pre-
diction was first proposed by Wiener.

LINEAR LEAST SQUARE SMOOTHING AND PREDICTION

There are three main assumptions npon which the application of the Wiener theory depends.
These assumptions are:
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1. The time series represented by the signal s(t) and the noise n(t) are stationary.
This is to insure that statistical regularities observed in the past will continue in the future
(the statistical properties do not change with time).

2. The prediction and smoothing is obtained by a linear operation, that is, with a linear,
physically realizable filter. Linearity encourages generalization of theory to include a wide
class of signals and realizability requires the results be practical.

3. The measure of effectiveness of the filter is the mean-square difference between the
actual output and the desired output. This is an ensemble average which uses the statistics of
the amplitudes of the different frequency components of the signal and noise.

The Wiener filter performs linear least square prediction and smoothing of a stationary
time series. If h (t) is the impulse response of an ideal linear filter whose output is e(t), then the
following characteristics are desired for an input signal,s(t):

(2) 1deal prediction

e(t) = s(t+a)
h(t) = §(t+a)
Hjw) = el®®
(b) Ideal smoothing
e(t) = s(t)

h(t) = 8(t)
He(jw) =1

where H(jw) is the transfer function of the ideal filter and (a) is positive, signifying « time
advance. As a result of filtering linearly,

«©

e(t) = f h(B) s(t- Bds (I-32)

-

which is nct necessarily physically realizable. The above also indicates that if the smoothing
problem is solved, it may be easily extended to include prediction by introducing a time advance
(2) in the time solution or a continuous, linear advance in phase ei“* in the frequency solution.

Let the signal plus noise be denoted by x(t) = s(t) + n(t) and defined for -® < t < T, where
(T) is the present time. The problem then reduces to finding the best mean-square estimate of
e(T) that is generated by a physically realizable linear operation on x(t). The procedure is shown
in Figure (1-10) where &(T) is the estimate of e(t) at time (T) ,and h(t)and H(jw) are the impulse
response and transfer function of the linear filter, respectively. Applying the mean-square error
criterion to the output of Figure (I-10),

mse = E[€2(T)] = E[e(T) - é(T)]2 (1-33)

where E[ ] refers to an ensemble average of all possible signal and noise functions with each
weighted according to its probability of occurrence. Expanding the right side of Eq. (I-33),

mse = E[eXT)] - E[e(T) &T)] + E[XT)) . (1-34)

The signal and noise are random processes assumed to be statistically independent, stationary,
have zero means, and autocorrelation functions v (7) and y (1), respectively. With the aid of
the convolution theorem, Eq. (I-34) may be rewritten as
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Figure I-10 - Procedure for estimating the desired
output with a linear, physically realizable filtev
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Figure I-11 - Procedure using spectrum-shaping

technique for obtaining an optimum smoothing and
prediction filter, H(jw)

mse = Y (0) - 2 j h(B) Yoo DB + j’j’ h(B,) h(By) ¥y(By - Bp) 4By By, (1-35)
0 00

where v (V) is the average power in e(t), (7 is the crosscorrelation function between
e(t) and x(t), and Y (7) is the autocorrelation function of x(t). The problem now is to find
a function h(t) which minimizes the integrals in Eq. (I-35). This suggests using the calculus
of variations. Applying this technique to Eq. (I-35), the mean-square discrepancy between the
desired and actual output will be minimized if the impulse response of the optimum filter h(t)
satisfies the following relationship:

j h(B) ¥ (t-BdB = ¥ (t) for all t > 0. (1-36)
0

This is known as the Wiener-Hogi equation.

If x(t) is reduced to white noise, then the Wiener-Hopf equation may be éasily sclved. In
order to make use of this fact, a spectrum- shaping technique is introduced. If the amplitude-
phase spectrum of the input is denoted by X(jo), then the new procedure for obtaining an opti-
mum filter is shown in Figure (1I-11) where x'(t) represents white noise. The Wiener-Hopf
equation is then expressed as

Ih'(ﬁ) Yo (t-B)aB = b (1) for all ¢ > 0. (1-37)
[\)

Since the autocorrelation function of white noise is an impulse function, Eq. (1-37) reduces to
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i

h'(t) Yerel t) t >0
(1-38)

= 0 t <0

It is often desirable to work in the frequency domain when usiag spectrum shaping tech-
niques. For example, it is convenient to determine the cross-power spectra between x’'(t)
and e(t). This is

H(jw) W (w)
Wyero(w) = el =7 X(—jw; (1'39)
where W (w) is the power spectrum of the signal and X(-jw) is a factor of the power spectrum
of the input W,(w) such that W (@) = X(jw) X(~jw); X(s) has all poles and zeros in the LHP.
Equation (I-39) may then be expanded as

Vo (@) = Wp(w) + W, (@) (1-40)

where Wp(w) corresponds to LHP poles and W.(w) corresponds to RHP poles. Taking the
Fourier transform of both sides,

Yerot) = hy(t) + h (t) (z-41)
and has the following constraints:
he(ty = 0 for t <0
(I-42)
h(t) = 0 for t>9

Comparing Egs. (I-41) and (I-42) to Eq. (I-38), it is seen that only the poles in the LHP need be
considered to insure physical realizability.

The solution of the linear least square smoothing and prediction problem may be sum-
marized by the following steps:

1. Reduce the input x(t) to white noise. x'(t)

2. Expand Wyero(@) = H(jo) W (w)/X(-jw) in partial fractions. Let L‘(t) = 3 terms corre-
sponding to LHP poles.

3. Compute H'(jw) by taking the Fourier transform, 3{ }, of h'(t)
H'(jo) = 3{h'(t)}.
4. Obtain the optimum filter whose transfer function is

1

H(jw) = H'(jo) X(i@)

which i physically realizable.

SIGNIFICANCE OF MEAN-SQUARE ERROR CRITERION

The design formulas for the Wiener optimum filter depend only on the power spectrum of
the signal and noise. Consequently, it may seem necessary only to consider the statistical
distribution of their amplitudes and not of their phases. However, the Wiener filter filt>rs on
the basis of waveshape and not just the spectrum so that relative phases of the signal and noise
must be considered. Because it is required that the prediction be a linear operation, a com-
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